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Abstract 
 Stochastic models are being used to an ever increasing extent to investigate phenomena .The 
processes in discrete time is Markov Chain. We dealt it in the application of Gambler’s Ruin 
problem. Moreover, we establish the drug testing. 
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Introduction 
In this paper we consider the various form of Markov Chain. The stochastic process  

{ Xn , n = 0 , 1 , 2 , . . . }  is called a Markov Chain if for i , k , i1 , i2 , . . . , in-1 ∈ N ,          

P{ Xn = k  /  Xn-1 =  i  ,  Xn-2  =  i1 . . . X0  =  in-1 } = P { Xn = k  /  Xn-1 = i } = Pik  …..   ( 1.1 ) 

Equation (1.1) implies that given the present state of the system, the future is 
independent of its past. If the state space is discrete in a Markov process, then it is called 
Markov Chain.                

Further, if the parameter space is also discrete, then the Markov Chain is called 
discrete parameter Markov Chain.  The values i , i1 , i2 , i3 , . . . , in-1   are called the states of  
the Markov Chain. 

0-step transition 
If the transition probability Pjk is independent of n, the Markov Chain is said to be 

homogeneous or to have stationary transition probability. If it is dependent on n, the chain is 
said to be non-homogeneous (Baily, 1964). 

            The  transition s  probability   Pjk   refers  to  the  state ( j , k )  at  two  successive  
trials  

( nth and ( n+1)th ), the transition in one step and  Pjk  is called one- step transition probability .  

In general , if the pair of states ( j , k ) at two successive trials say state j at the nth trial 
and the state at the ( n + m)th  trial, then the  corresponding transition probability is   called  
m-step transition probability and it is denoted by Pjk(m), where Pjk(m)= P{ X n+m = k / X n = j }. 

                      1 , if  j = k 
 
0-step transition probabilities is given by Pjk(0) =  

 
 0 , otherwise . 

Transition Matrix 

The transition probability Pjk satisfy Pjk ≥ 0, 1P
k

jk =∑  for all j .The one-step 

transition probabilities are compactly specified in the matrix form  
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              This is called the transition probability matrix of the Markov Chain. Any such square 
matrix that has non-negative entries and unit row sums is called a stochastic matrix. 

            Any equivalent description of one-step transition probabilities is given by a discrete 
graph is called the state-transition diagram. 

           The probability mass function of the random variable x0 is called the initial 
distribution and is specified by the probability vector P( 0 ) = [ P0(0) , P1(0) ,…] and  P( n ) is 
called the state probability vector after n or the probability distributions of Xn . 

 

Order of Markov Chain 
A Markov Chain { Xn } is said to be of order S ( S = 1,2,…) if for all n ,  

P [ Xn = k / Xn-1 = in-1 , Xn-2 = in-2 , . . . , Xn-s = in-s , . . .] = P [ Xn = k / Xn-1 = in-1 , Xn-2 = in-2 , . . 
. , Xn-s = in-s ] . 

          A Markov Chain { Xn } is said to be of order one 

 P [ Xn = k / Xn-1 = j , Xn-2 = j1 , …] = P [Xn = k / Xn-1 = j ] = Pjk .  

 

Irreducible State 

If the probability Pjk (n) is non-zero for some n ≥ 1, then we say that the state k can be 
reached from the state j . If every state can be reached from every other state ( in any number 
of transitions ) then the chain is said to be irreducible . The transition matrix is irreducible. 
State j is said to be accessible from state i, if for some n ≥ 0, Pjk (n) > 0 and we write i → j. 

Absorbing State 
            If C is a set of states such that no state outside of C can be reached from any state of C 
, then the set of states C is said to be closed . If a closed set contains only one state then the 
state is called an absorbing state. That is, a state i is said to be absorbing if  Pii = 1,    and   

Pik = 0 for i ≠ k. 
           The probability that stating with j , the state k is reached for the first time at the rth  
step and again after that at ( n-r )th step is given by fjk (r)  Pkk ( n-r ) , n ≥ 1, with Pkk (0) = 1,  

fjk (r) = 0 , fjk (1) = Pjk . 

                Let Fjk  denote the probability of ever visiting state k , starting from state j . Then   

Fjk = ( )∑
∞

=1n
jk nf  , where fjk(n) = ( )∑

≠
−

kj
jkji 1nfP  ,  n = 2, 3, …. 

            The mean ( first passage) time from the state j to the state k is given by   

μjk = ( )∑
∞

=1n
jk nnf  ,  μjj = ( )∑

∞

=1n
jj nnf   is known as the mean recurrence time for j . 
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Recurrent State 
 A state i is said to be recurrent if and only if starting from state i , the process 
eventually returns to state i with probability 1. That is, if Fii = 1 ( i.e return to the state i is 
certain ). A state i is said to be transient ( or nonrecurrent) if and only if there is a positive 
probability that the process will not return to this state . That is the state i is transient if Fii < 1. 

           A recurrent state i is said to be null if μii = ∞ , that is if the mean recurrence time is 
infinite . A recurrent state is said to be non-null if μii < ∞ . For a recurrent state i , Pii (n) > 0 
for some n ≥ 1 . The period of state i , by i > 1 which is the greatest common divisor of the set 
of positive integer such that Pii(n) > 0. A recurrent state i is said to be aperiodic if no such t > 
1 exists .A recurrent state i is said to be periodic if   t > 1.  

Aperiodic State 
A recurrent non-null and aperiodic state of a Markov Chain is said to be ergodic. A 

Markov Chain all of whose states are ergodic is said to be an ergodic chain. Consider a  

Markov Chain with transition probability Pjk . A probability distribution   { vj } is called 
stationary ( or invariant ) for the given chain if  vk  = ∑

j
jkjPv such that vj ≥ 0 ,  ∑ =

j
j 1v . If 

the numbers vj, j ∈ I are such that ∑
∈

=
Ij

j 1v , then vj’s are said to form a stead- state 

distribution.  

Regular Chain 
 A Markov Chain is called regular if there is a finite positive integer m such that 

 after m time-steps, every state has a non-zero chance of being occupied .  

 A Markov Chain is absorbing if (1) it has at least one absorbing state, (2)  it is 
possible to go from every non-absorbing in one step . 

Lemma 

            Let { fn }be a sequence such that f0 = 0 , fn ≥ 0 and ∑
∞

=1n
nf = 1 . Let t be the greatest 

common divisor of those n for which fn > 0 . Let { un }be another sequence such that u0 = 1 ,  

un = ∑
=

−

n

1r
rnruf ( n ≥ 1) . Then 

∞→n
Limit un   = µ , where μ = ∑

∞

=1n
rnf .  

Theorem 

            If a state j is recurrent , then as n → ∞ , Pjj ( nt ) → 
jj

t
μ

 , where j is periodic with t . 

Proof 

Let the state j be recurrent. Then ( )∑=μ
n

jjjj nnf is defined. Since Pjj (n) = ∑
=

−
n

1r
jjjj )rn(P)r(f , 

we replace fjj  by fn ,   Pjj ( n ) by μn   and  μ jj by μ in lemma 1.  
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Then we get 
∞→n

Limit Pjj( nt ) → 
jj

t
μ

.  

Recurrent and Aperiodic State 

 If a state j is recurrent and aperiodic , then  Pjj( n )→ 
jj

1
μ

 as n→ ∞ .The state is 

aperiodic ,   t = 1, then Pjj ( nt )  becomes  Pjj( n )→ 
jj

1
μ

 as n→ ∞ . 

Recurrent Null State 

If a state j is recurrent null (whether periodic or aperiodic), then Pjj( n )→ 0 as  

n→ ∞ . In the case of j as recurrent null , μ jj  = ∞ . So becomes Pjj( n ) → 0 as n→ ∞ .If state 
k  is either transient or recurrent null , then for every j , Pjk( n ) → 0 as n→ ∞ . 

 We know Pjk(n) = ∑
=

−
n

1r
kkjk )rn(P)r(f . 

Let n > m , then    Pjk(n) = ∑
=

−
m

1r
kkjk )rn(P)r(f  + ∑

+=
−

m

1mr
kkjk )rn(P)r(f  

                                       ≤  ∑
=

−
m

1r
kkjk )rn(P)r(f  + ∑

+=

n

1mr
jk )r(f  

We know ∑
∞

=1m
jk )m(f  < ∞  and ∑

+=

n

1mr
jk )r(f → 0  and  Pkk ( n-r ) → 0 as n → ∞ ,  We get  

Pjk( n ) → 0 as n→ ∞ . 

Recurrent Non-null State 

      If state k is aperiodic , recurrent non-null , then Pjk( n ) → 
kk

jkF
μ

 as n→ ∞ . From  

Theorem , we have Pjk( n ) − ∑
=

−
m

1r
kkjk )rn(P)r(f  ≤ ∑

+=

n

1mr
jk )r(f , Since j is aperiodic recurrent 

and non-null , then,  Pkk( n-r )→ 
kk

1
μ

 as n→ ∞ .      Then , we get as n , m→ ∞ , 

Pjk(n) − 0
)r(f

kk

m

1r
jk

→
μ

∑
= .    Therefore ,  Pjk( n )→ 

kk

jkF
μ

 as n→ ∞ . 

Applications of Markov Chain 

The Gambler’s Ruin problem 
Consider a gambler who at each play of the game has probability P of winning one 

unit and probability q = 1-P of losing one unit. Assuming that successive plays of the game 
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are independent, what is the probability that, starting with i units, the Gambler’s fortune will 
reach N before reaching 0? (Ross, 1972). 

           If we let Xn denote the players fortune at time n , then the process  (Xn  , n = 0,1,2,… } 
is a Markov Chain with transition probabilities P00 = PNN = 1, Pi,i+1 = P = 1- Pi,i-1,  i = 1, 2, 
3,…,N-1 .        

          This Markov Chain has three classes , namely , {0}, { 1,2,3,…,N-1 }, and {N}; the first 
and third class being recurrent and the second transient . Since each transient state is visited 
only finitely often, it follows that, after some finite amount of time, the Gambler will either 
attain his goal of N or go broke.  

           Let Pi, i = 0, 1, 2, …, N , denote the probability that , starting with i, the Gambler’s 
fortune will eventually reach N . By conditioning on the outcome of the initial play of the 
game we obtain  

                                Pi = pPi+1 + q Pi-1 ,    i = 1 ,2 , … , N-1 . 

or equivalently , since p + q = 1,           p Pi + q  Pi  = pPi+1 + q Pi-1   , 

 or                    Pi+1 -  Pi = 
p
q  ( Pi - Pi-1 ) ,   i = 1 ,2 , … , N-1 . 

 Hence , We obtain from the preceding line that , since P0 = 0 ,   

                       P2  -  P1 = 
p
q  ( P1 – P0 ) = (

p
q ) P1 , 

                       P3 -  P2 = 
p
q  ( P2 – P1 ) = (

p
q )2 P1 ,  

            Pi -  Pi-1 = 
p
q  ( Pi-1- Pi-2 ) = (

p
q )i-1 P1, 

                       PN -  PN-1 = 
p
q  ( PN-1 – PN-2 ) =  (

p
q )N-1 P1.  

 Adding the first i-1 of the equation yields  

                                Pi -  Pi-1 = P1 [ ( p
q ) + (

p
q )2 + (

p
q )i-1 ]   

 or       
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Now, using the fact that PN = 1, we obtain that  

                                      1N P
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1            .   .   .   .   .   ( 1.2 ) 

                                     
N
1      ,  if  p =  

2
1  

Note that , as N → ∞ , 

                                     
2
1 p  if,

i

p
q1 >⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−  

                     P1→  

                                                       
2
1p  if  ,          0 ≤  

 Thus, if p > 
2
1 , there is a positive probability that the gambler’s fortune will increase  

indefinitely; if p ≤
2
1 , the gambler will , with probability 1, go broke against an infinitely rich 

adversary.  

 

Example              
            Suppose Mg Ba and Mg Hla decide to flip pennies the one coming closet to the wall 
wins. Mg Hla , being the better player , has a probability 0.6 of winning on each flip , If Mg 
Hla starts with five pennies and Mg Ba with ten ,then what is the probability that Mg Hla will 
wipe Mg Ba out ? What is the probability if Mg Hla starts with ten and Mg Ba with 20? 

 

Solution 
( a )  The desired probability is obtained from equation ( 2.1 ) by letting          i = 5 , N = 15 

and      p = 0.6 .  

P1 = 

P1 = 
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             Hence, the desired probability is   P = 15
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   ≈ 0.87 . 

 ( b ) The desired probability is obtained from equation ( 2.1 ) by letting         i = 10 , N = 30 
and p = 0.6 . 

            Hence, The desired probability is   P = 30
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   ≈ 0.98 . 

 

Drug Testing 
           For an application of the gambler’s ruin problem to drug testing, suppose that two new 
drugs have been developed for treating a certain disease. Drug i has a cure rate Pi , i = 1 , 2 , 
in the sense that each patient treated with drug i will be cured with probability Pi . These cure 
rates are , however , not known and suppose we are interested in a method for deciding 
whether  P1> P2  or  P2 >P1 .             

 To decide upon one of these alternatives, consider the following test: 

Pairs of patients are treated sequentially with one member of the pair receiving drug 1 and 
determined, and the testing stops when the cumulative number of cures using one of the drugs 
exceeds the cumulative number of cures when using the other by some fixed predetermined 
number.  

More formally, let 

                  1, if the patients in the jth pair to receive drug number 1 is cured . 

  Xj    =         

      0, otherwise 

                  1, if the patients in the jth pair to receive drug number 2 is cured. 

  Yj    =     

                 0, otherwise.          

For a predetermined positive integer M test stops after pair N where N is the first 
value of n such that either  

                X1 + ⋅⋅⋅ + Xn – ( Y1 + ⋅⋅⋅ + Yn ) = M 

or 

               X1 + ⋅⋅⋅ + Xn – ( Y1 + ⋅⋅⋅ + Yn ) = -M . 

 In the former case, we then assert that P1> P2 and in the latter that P2 >P1. 

           In order to help ascertain whether the preceding is a good test , one thing we would 
like to know is the probability of it leading to an incorrect decision . That is for given P1 and 
P2 where P1> P2   , what is the probability that the test will in correctly assert that P2 >P1? 
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           To determine this probability, note that after each pair is checked the cumulative 
difference of curves using drug 1 versus drug 2 will either go up by 1 with probability 

 P1( 1-P2 ) , i.e , the probability that drug 1 leads a cure and drug 2  does not or go down by 1 
with probability  ( 1-P1 )P2 , or remain the same with probability P1P2 +  ( 1-P1 ) ( 1-P2 ). 
Hence, if we only consider those pairs in which the cumulative difference changes, then the 
difference will go up by 1 with probability  

            P = P { up 1 / up 1 or down 1 } =  
( )

( ) ( ) 2121

21
PP1P1P

P1P
−+−

−       

and down 1 with probability  

            q = 1 - p = ( )
( ) ( ) 2121

12
PP1P1P

P1P
−+−

−  . 

          Hence, the probability that the test will assert that  P2 >P1 is equal to the probability that 
a gambler who wins each ( one unit ) bet with probability P will go down M before  

going up M before going up M . But  i = M , N = 2M , the probability is given by  
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 Thus, for instance, if P1 = 0.6 and P2 = 0.4 then the probability of an incorrect decision 
is 0.017 when M = 5 and reduces to 0.0003 when M = 10. 

Conclusion 
 We have studied the transition probability function of the Markov Chain .The 
Gambler’s Ruin problem and drug testing have been also studied . Gambler's Ruin problem is 
very useful in practical world such as lottery, chess and lucky draw, etc … 
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