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Abstract 
A method is devised to study the evolution of a system of waves which locally have a multi 
periodic structure. The present theory generalizes the results for the development of a single 
periodic wave train subject to large scale variations. 
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Introduction 
  In this paper, the author reproduced the problem of a single – phase mode considered 
by Luke (1966) and Whitham (1965 a, b, 1967 a, b). This problem was reexamined and put in 
a form conveniently for extension to modes having more than one phase.  

 

 The Problem of a Single-Phase Mode 
  The present study reproduced the two – timing method due to Luke (1966) and 
Whitham (1965 a, b, 1967 a, b), for a single – phase mode. This method resembles the 
procedure used by (Kuzmak, 1959) for ordinary differential equations that are nearly 
periodic, but fully nonlinear. First,   the Hamilton’s variational principle was considered. 

 δJ =  t xL (u, u , u )dtdx = 0δ∫ ∫ , (1) 

with the suitable Lagrangian density  

 L = (ut)2/2 – (ux)2/2 – V (u),  (2) 

and the author obtained the nonlinear Klein-Gordon equation  

 u tt -  u xx + V ’ (u) = 0. (3) 

Second, the author introduced the slow variables X and T by the relations  

 X =  ∈x,                T = ∈t,  (4) 

and assumed an asymptotic expansion of the form  

 u (x, t) = f (θ, X, T)+ ∈u(1) (θ, X, T) + ∈² u(2) (θ, X, T) + ∈3 u(3) (θ, X, T) + O (∈4), (5)  

where ∈ is a small positive parameter. The wave number θx and frequency - θt are allowed to 
depend on the slow variables X and T so that  

 -θ t =  ω  (X, T),  θx = κ(X, T), (6) 

together with the consistency condition  

  κT + ωX = 0, (7)  

which is equivalent to assuming that  

  ω  = - θt = - Θ T, κ = θx = θX (8)  
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where the phase variable  

  θ = ∈-1 Θ (X, T).  (9)  

Third, in terms of the independent variables θ, X and T, the author put the Klein – Gordon 
equation (3) in the expanded form  
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by using the assumed asymptotic expansion (5): From the expansion (10), for the leading-
order, the author got the second-order homogeneous differential equation for the function f,  

  (ω2 -κ2) f θ0 + V’ (f) = 0. (11) 

From the expansion (10), for the first-order, the author obtained the second-order 
nonhomogeneous differential equation for the function u (1): 

  (ω² - κ2) u(1)
θ0  + V” (f) u(1) = F1,  (12) 

where F1 is defined by  

  F1 = 2ω fθT + 2κ fθX + wT fθ + κX fθ. (13) 

Fourth, the author applied the two-timing method by treating f, u(1), u(2), u(3), … as functions 
of the fast variable θ. and the slow variables X and T. From equation (11), then the author 
obtained the implicit solution  

  θ = df B,
2(E V(f))

2 2ω − κ −
−∫  (14) 

where B = B (X, T), E = E (X, T) are the constants of integration. If f is periodic in θ with a 
constant period 2P, then the normalization condition is  

  ∫ =
−

−
P2

V(f)E
df

2
κω 22

, (15) 

which is a (dispersion) relation that holds between the frequency ω (X, T), wave number              
κ (X, T) and E (X, T). Fifth, the author considered the linear case, by letting V (u) = u²/2 in 
(3). The periodic solution is f = 2 E  cos θ with period 2P = 2π. Since the zeros of E – V (f) 
are         - 2 E  and 2 E , the linear dispersion relation is  

  ω² - κ² = 1, (16)  
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which is independent of E and the amplitude is α = 2 E . Sixth, the author obtained the 
condition  

  
2

10
F f d ,θ θ = θ∫

P
 (17) 

which will avoid the secular terms proportional to θ from u(1), (1)uθ . Seventh, by using 
expression (13) in the secular condition (17), the author obtained the amplitude equation  
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Then the consistency condition (7), the dispersion relation (15), and the amplitude equation 
(18) form a coupled set of equations for the function E (X, T), wave number κ (X, T) and 
frequency ω (X, T). 

 

Reexamination of the Problem of a Single-Phase Mode 
 In this paper, the author put in a form convenient for extension to modes have more 
than one phase, in the following manner. First, the author reconsidered the one dimensional 
Klein-Gordon equation 

  uu -  uxx  + V’ (u) = 0, (19) 

which provides a relatively simple model for nonlinear dispersive waves. A permanent wave  

  u = f (θ)                  θ  = κx – ωt, (20)  

(so that κ = ∂θ / ∂x is the wave number and ω = - ∂θ / ∂t the frequency), is the solution of the 
second – order nonlinear equation  

  ( ² ²ω − κ ) fθ0 + V’ (f) = 0, (21)  

Equation (21) can be solved by elementary means and has solutions periodic in θ for 
reasonable forms of V’ (f) and has a solution given implicitly by the relation  

  θ = ² ² df
2 E V(f )

ω − κ
−∫ , (22) 

where E (x, t) is the constant of integration. If the function u is periodic in θ with a fixed 
constant period 2P. The author had the dispersion relation  

  ∫ =
−

−
P2

V(f)E
df

2
κω 22

, (23) 

Between the frequency ω (x, t), wave number κ (x, t) and E (x, t). Second, the author 
reconsidered the linear case, V (u) = u² / 2, that is the linear equation  

  uu = uxx + u = 0 (24) 

By assuming a solution of the form  

  f = α cos (2πθ/P), (25) 
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periodic in θ with a fixed constant period P, and constant amplitude α,  the author found that               
α = 2 E and the linear dispersion relation  

  ω² - κ² = P² / (2π)². (26)  

Permanent waves (25) are very special solutions of (19) and my aim is to extend this type of 
solution to a more general class of solutions. Third, the author assumed the solution of the 
nonlinear Klein-Gordon equation (19) to be periodic in θ, with a fixed constant period 2P, 
and have slow space and time variations. Accordingly the author wrote 

  θ = ∈-1Θ (X, T),         X = ∈x,            T = ∈t,  (27) 

where ∈ is a small positive parameter, and the wave number κ and the frequency ω are now 
slowly varying functions derivable from the phase function θ as  

  κ = θx = ΘX,               ω = -θt = - ΘT. (28) 

For the existence of a rapid phase θ, the author  had the consistency condition  

  κT + ωx = 0. (29) 

In terms of the fast variable θ, and slow variables X, T, the Klein – Gordon equation (19) can 
be written in the form  

 m uθ0 + V’ (u) = ∈[2(ωuθT + κuθX) + M uθ] + ∈² (uXX – uTT), (30)  

where the functions m and M are denoted by the relations  

 m = ω² - κ² = 2 2
T XΘ − Θ .                            M = ωT + κx = ΘXX - ΘTT. (31) 

Fourth, the author wrote the functions u, m and M in the formal power series expansions,  

  u = f + ∈u (1) + ∈2 u(2) + … ,  (32) 

  m = g + ∈m (1) + ∈2 m(2) + … , (33) 

  M = g + ∈M(1) + ∈2 M(2) … , (34) 

and put the Klein-Gordon equation (19) in terms of the fast and slow variable θ, X, T as  

 (g + ∈m(1) + ∈² m(2) +  …) (f + ∈u(1) + ∈2 u(2) + ... )θθ 

 + {V’ (f) + (∈u(1) + ∈2 u(2) +…) V’’(f) + (∈u(1) + ∈² u(2) + …)² V’” (f) / 2 

                      +  (∈u(1) + ∈² u(2) + …)³ V’” (f) / 6 + …} 

 = ∈ {2/ω (f + ∈u(1) + ∈² u(2) + …)θT + κ (f + ∈u(1) + ∈² u(2) + …)θX] 

         + (G + ∈M (1) + ∈² M(2) + …) (f + ∈u(1) + ∈² u(2) + …)θ } 

         + ∈² [(f + ∈u(1) + ∈² u(2) + …)XX – (f + ∈u(1) + ∈² u(2) + …)TT]. (35) 

From the expansion (35), for the leading-order, the author got  

  g fθθ + V’ (f) = 0, (36) 

which is a second-order, nonlinear, homogeneous differential equation for the unknown 
function f. From the expansion (35), for the first-order, the author got  

  Lu (1) = F(1),  (37)  

which is a second-order, linear, non-homogeneous differential equation for the unknown 
function u(1), where the non-homogeneous term 
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  F(1) = F(1) (f; m(1); G), (38) 

is given by the expression 

  F(1) = -m(1) fθθ + 2 (ωfθT + κfθX) + Gfθ, (39) 

and the self-adjoin operation L is given by the expression  

  L = g d²
d ²θ

 + V” (f) (40) 

From the expansion (35), for the second – order, the author got  

  Lu(2) = F(2) (41) 

which is a second-order, linear, non-homogeneous differential equation for the unknown 
function u(2), where the non-homogeneous term  

  F(2) =  F(2) (f, u(1) ; m(1) , m(2) ; G, M (1)), (42) 

is given by the expression  

 F(2) = -m(1) (1)
0uθ  - m(2) fθ0 + 2 ( )(1) (1)

T Xu uθ θω + κ -  
2(1)u  V’” (f) / 2  

  (1) (1)
xx TTGu M f f fθ θ+ + + − . (43) 

From the expansion (35), for the third – order, the author got 

  Lu (3) = F(3) (44) 

which is a second-order, linear, non-homogeneous differential equation for the unknown 
function u(3), where the non-homogeneous term  

  F(3) = F(3) (f, u(1), u(2); m(1), m(2), m(3); G, M(1), M(2)),  (45)  

is given by the expression  

 F(3) = - m(1) (2)
0uθ  - m(2) (1)

0uθ - m(3) fθ0 - u(1) u(2) V’” (f) - 
3(1)u V’” (f) / 6 

                       + 2 ( )(2) (2)
T Xu uθ θω + κ + G (2)

0u + M(1) (1)
0u + M(2) f0 + (1)

XXu - (1)
TTu . (46) 

In general, from the expansion (35), for the nth order, (n ≥ 1), the author had  
  Lu (n) = F(n), (47) 

which is a second-order. Linear, non-homogeneous equation for the unknown function u(n), 
and the non-homogeneous term F(n) is given by  

 F(n) = F(n) (f, u(1), u(2), …, u(n-1); m(1), m(2), m(3), … , m(n); G, M (1), M(2), … , M(n-1)).(48) 

Fifth, the author obtained the leading – order solution f given implicitly by  

  θ = g df ,
2 E V(f )−∫  (49) 

where E. the amplitude of the wave, is a function of the slow variables X, T. The fundamental 
dispersion relation ω² - κ² = g (E) is found by taking the function f which is periodic in θ with 
a fixed constant period 2P , so that 
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  ∫ =
−

P2
V(f)E

df
2
g . (50) 

Sixth, the author obtained two linearly independent solutions ω=ω1=f0 and ω=ω2=fg + (θ / 
(2g)) ω1 of the homogeneous differential equation  

  Lω = 0. (51) 
Equation (51) is the corresponding homogeneous differential equation of the non-
homogeneous differential (37) or (41) or (44) or (47). Seventh, the author obtained the first 
relationship  

  ( )n(n) (n)
1 1 10 0

g u u F d , (n 1).
θθ

θ θ⎡ ⎤ω − ω = ω θ ≥⎣ ⎦ ∫  (52) 

and the second relationship  

  ( )n(n) (n)
2 2 20 0

g u u F d , (n 1).
θθ

θ θ⎡ ⎤ω − ω = ω θ ≥⎣ ⎦ ∫  (53) 

to obtain explicit solution u(n). Eight, the author obtained the condition 

  
2 (n)

1F d 0, n 1,ω θ = ≥∫0

P
 (54) 

which is the condition for the existence of a periodic function u(n). Ninth, the author obtained 
the condition  

  
2 (n) (n)

2F d (0)u (0). n 1,θω θ = − ω ≥∫ 10

P
P    (55) 

which is appropriate to ensure periodicity for the function u(n). Tenth, by using the 
normalization condition  

  u(n) (0) = 0 = (n)uθ (0), (56) 

The author found that the unique periodic solution is  

 u(n) = (n) (n)
2 1 1 20 0

1 f d f d , (n 1),
gW

θ θ⎡ ⎤ω ω θ − ω ω θ ≥⎢ ⎥⎣ ⎦∫ ∫   (57) 

where the function W = W (ω1, ω2) is the constant Wronskian of ω1 and ω2, defined by  

  W = ω1 ω2θ - ω2 ω1θ . (58) 
Moreover, the two secular conditions the author obtained the condition 

  
2 (n)

0
F f d 0,θ θ =∫

P
 (59) 

       
2 (n) (n )

g '0 0

1F f F f d ' d 0.
2g

θ

θ

⎧ ⎫
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⎩ ⎭
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P
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Eleventh, the author considered the u(1) problem, and it is found that the two secular 
conditions (59) and (60) reduce to  

                                 m(1) = 0, (61)   

 ( ) ( )2 2 22 2 2

0 0
G f d f d f d 0

T Xθ θ θ
∂ ∂

θ + ω θ + κ θ =
∂ ∂∫ ∫ ∫0

P P P
. (62) 
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Twelfth, the author considered the u(2) problem, and it is found that the two secular 
conditions (59) and (60) reduce to  

 M(1) = 0:  (63) 

 -m(2) 
2

0 gf f f d
2gθ θ

⎧ ⎫θ
+ θ⎨ ⎬

⎩ ⎭
∫0

P
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22 (1)

X TT XX g
1Gu 2( u u ) u V (f ) f f f f d
2 2g

(1) (1) (1)
θ θΤ θ θ

⎧ ⎫θ⎧ ⎫− − ω + κ + + − + θ.⎨ ⎬⎨ ⎬
⎩ ⎭⎩ ⎭

∫ '''
0

P
 (64) 

In general, the author found that m(1) = M(1) = 0 when n is an odd positive integer. Moreover, 
u(n) is an odd function of θ when n is an odd positive integer, and u(n) is an even function of θ 
when n is an even positive integer. Thirteenth, the author reconsidered the linear case (24), 
and it is found that  

  g = P ² / π² = constant,            G = - (ωET + κEX) / E. (65) 

 

 

Conclusion 
In this paper, a method has been developed for investigating the evolution of 

nonlinear waves which have many local periodicities. The detailed analysis was applied to 
only one nonlinear wave problem, the one dimensional Klein-Gordon equation. I hope that it 
will be possible to construct the averaged Lagrangian by appealing to the basic nonlinear 
problem as a special case, for example, weak interactions and wave propagation in slowly 
varying medium. 
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