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Abstract 

This paper is considered on the Dirichlet boundary value problems for a two-dimensional 

elliptic equation. The existence and uniqueness of the solutions of the Dirichlet boundary 

value problems are discussed. Different approximations are used to derive a finite difference 

formula. The consistency and the stability of the finite difference formula are investigated. 
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Introduction 

The resulting finite difference numerical method for solving partial differential 

equations (Evans, L. C. 1998) have extremely broad applicability and can, with proper care, 

be adapted to most problems that arise in mathematics and its many applications. 

 

Existence of Weak Solution of Elliptic Problem 

We consider the Dirichlet boundary value problem (Evans, L. C. 1998)  for  poisson 

equation in two space dimensions 

                             
2in  u f R                                  (1.1) 

          0  on  u                                          (1.2) 

Multiplying the elliptic equation (1.1) by a test function v  
1
0( )H   and integrating over , 

we have  

       v u dx fvdx
 

                        (1.3) 

 .u vdx fvdx
 
                        (1.4) 

Then, we define a bilinear from B by 

                   ,B u v u vdx


                  (1.5) 

and a linear function F by  

                                                  ( ) .F v fvdx


                         (1.6) 

Then we study the continuity and the coercivity of B. 

 

Continuity of B 

                                           | ( , ) | | |B u v u vdx


                

By using Hölder’s inequality (Thomas, J. W. 1998), we have 
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Therefore B(u, v) is continuous. 

Coercivity of B 
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By using Poincaré’s inequality(Thomas, J. W. 1998), we have  
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Therefore B(u, u) is coercive. 

By Lax-Milgram Theorem(Thomas, J. W. 1998),  (1.1) has a unique solution. 

 

A Priori Bound 

Multiplying (1.1) by a test function u – uD 
1
0( )H   and integrating over , we have  

 ( )Du u u dx


    = ( )Df u u dx


   

 
2| |u dx


 = D Du u dx f u dx f u dx
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By using Young’s inequality(Thomas, J. W. 1998), we have  
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By using Poincaré inequality(Thomas, J. W. 1998), we have  

2 2
2 2

3

1 1
|| || || ||

2 2
u u

C
  

2 2 21 2
2 2 2

1

1
|| || || || || ||

2 2 2
Du u u

 
   


 

                                     
2 23
2 2

2 3

1 1
|| || || || .

2 2 2
Du f

 
   

  
 

For sufficiently small 1, 2, 3,  
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Finite Difference Method  

We consider the equation  

                                 
2( ), (0,1)u f x in                         (1.7) 

 with the boundary conditions 

                                                0  on  .u                              (1.8) 

Let the grid spacing in x and y be 1 1,
N M

h k   and the set of inner grid points is denoted by  

h, k ={(x, y) | x = 0, y = jk, j = 0, …, M} 

 {(x, y) | x = 1, y = jk, j = 0, …, M} 

 {(x, y) | x = ih, y = 0, i = 0, …, N} 

 {(x, y) | x = ih, y = 1, i = 0, …, N}. 

Using the following difference approximations 

 x xD D u 
=

2

2

( , ) 2 ( , ) ( , )
( )

u x h y u x y u x h y
O h

h

   
  

 y yD D u 
=

2

2

( , ) 2 ( , ) ( , )
( )

u x y h u x y u x y h
O k

k

   
  

in (1.7), we have 

 –u(xi, yj) = fij 

        , ,x x i j y y i jD D u x y D D u x y      = fij 

1, 1, , 1 , 1

2 2

2 2i j ij i j i j ij i ju u u u u u

h k

        
 = fij                      (1.9)                    

            0 0j Nj i iMu u u u   =0.                                               (1.10) 

 

 5-Point Method 

If we choose h = k, then we have the system of linear equations become 

  1, , 1 1, , 1

2

4
, .

i j i j ij i j i j
i j ij

u u u u u
u x y f

h

       
      (1.11)                            

The system of linear equations (1.11) can be written in the matrix form 

AU = F 
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where  
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U = (u11, u21, …, uN – 1,1, u12, …, uN – 1,2, …, uN – 1, N – 1)
T
 

 

F = ( f11, f 21, …, fN – 1,1,…, fN – 1, N – 1)
T
. 

 

 Consistency 

The local truncation error of the finite difference method (1.11) is given by                                
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2 2
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12 12
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h h
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Therefore, the finite difference method (1.11) is consistent of order 2. 

 

 Stability. 

 Let  be the eigenvalue (Evans, L. C. 1998)  of A and u be the corresponding 

eigenvector to . 

 Au – u = 0 

 x x y yD D u D D u u       = 0. 

Multiplying the equation by u and summing, we obtain  
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, , , , ,x x y yD D u x y u x y D D u x y u x y u x y        =0 

                          
2 2 2

, , ,x yD u x y D u x y u x y     =0        (1.12) 

But 

                            u(x, y)=   ,x

z x

h D u z y



  

                              
2

,u x y =   
2

2 ,x

z x
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  . 

Using Cauchy-Schwarz inequality, we have  

     
22

, , .xu x y D u x y    (1.13) 

Similarly, we have  

     
22

, , .yu x y D u x y    (1.14) 

Multiplying (1.12) by h and using (1.13), (1.14), we have  

 
2 2
2, 2,2 || || || || 0h hu u   

and  

 2   

 || A
–1

 ||2 =  (A
–1
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  = (min)
–1

 

   
1

2
. 

Therefore, the finite difference method (1.11) is stable in 2-norm. 

 

Conclusion 

It is then necessary to resort to numerical or approximation methods in order to deal 

with the problems that cannot be solved analytically. In view of the wide-spread accessibility 

of today’s high speed electronic computers, numerical and approximation methods are 

becoming increasingly important and useful in applications. 
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