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Abstract 

The purpose of this paper is to introduce Markov Chain Monte Carlo methods (MCMC) and 

their applications, and to provide pointers to the literature for further details. We begin with a 

brief review of basic concepts and rates of convergence for Markov Chain Monte Carlo.  
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MARKOV CHAIN 

  A Markov chain X is a discrete time stochastic process {X0, X1, … } with the 

property that the distribution of Xt given all previous values of the process, X0, X1, … , Xt–1 

only depends upon Xt–1. Mathematically, we write, 

   P{Xt  A  |  X0, X1 , … , Xt–1}  =  P{Xt  A  |  Xt–1} 

for any set A, where P{° | °} denotes a conditional probability. 

  Typically (but not always) for Markov chain, the Markov chain takes values in 
n
  

(n-dimensional Euclidean space). However, to illustrate the main ideas, for most of this 

paper, we shall restrict attention to discrete state-spaces. 

  Extension to general state-spaces are more technical, but do not require any major 

new concepts.  Therefore we consider transition probabilities of the form  

Pij(t) = P{Xt= j  |  X0= i}. 

Bayesian Inference 

  Most applications of MCMC to date, including the majority of those described in the 

following section, are oriented towards Bayesian inference. From a Bayesian perspective, 

there is no fundamental distinction between observables and parameters of a statistical model 

: all are considered random quantities. Let D denote the observed data, and  denote model 

parameters and missing data. Formal inference then requires setting up a joint probability 

distribution P(D, ) over all random quantities. This joint distribution comprises two parts : a 

prior distribution P() and a likelihood P(D |). Specifying P() and P(D | ) gives a full 

probability model, in which 

   P(D, ) = P(D | ) P(). 

  Having observed D, Bayes theorem is used to determine the distribution of 

conditional on D : 

   P(| D) = 
( ) ( | )

( ) ( | )

P P D

P P D d

 

   . 

  This is called the posterior distribution of , and the object of all Bayesian inference. 

  Any features of the posterior distribution of , and is the object of all Bayesian 

inference : moments, quantiles, highest posterior density regions, etc. All these quantities can 
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be expressed in terms of posterior expectations of the functions of . The posterior 

expectation of a function f() is 

   E[f() | D] = 
( ) ( ) ( | )

( ) ( | )

f P P D d

P P D d

   

  




. 

  The integrations in this expression have until recently been the source of most of the 

practical difficulties in Bayesian inference, especially in high dimensions. In most 

applications, analytic evaluation of E[f() | D] is impossible. Alternative approaches include 

numerical evaluation, which is difficult and inaccurate in greater than about 20 dimensions; 

analytic approximation such as the Laplace approximation, which is sometimes appropriate; 

and Monte Carlo integration, including MCMC. 

Calculating Expectations 

  The problem of calculating expectations in high-dimensional distributions also occurs 

in some areas of frequentist inference. To avoid an unnecessarily Bayesian flavor in the 

following discussion, we restate the problem in more general term. 

  Let X be a vector of k random variables, with distribution (°). In Bayesian 

applications, X will comprise model parameters and missing data; in frequentist applications, 

it may comprise data or random effects. For Bayesian (°), it will be a posterior distribution, 

and for frequentists it will be a likelihood. 

  Either way, the task is to evaluate the expectation 

   E[f(X)]  =  
( ) ( )

( )

f x x dx

x dx








                 (1) 

for some function of interest f(°). Here we allow for the possibility that the distribution of X 

is known only up to a constant of normalization. That is, (x) dx is unknown.  

  This is a common situation in practice, for example in Bayesian inference we know 

P(| D)  P(D) P(D | ),  but we cannot easily evaluate the normalization constant  

P(D) P(D | ) d. 

  For simplicity, we assume that X takes values in k-dimensional Euclidean space, i.e., 

X comprises k continuous random variables. However, the methods described here are quite 

general. For example, X could consist of discrete random variables, so, then the integrals in 

(1) would be replaced by summations. Alternatively, X could be a mixture of discrete and 

continuous random variables, or indeed a collection of random variables on any probability 

space. Indeed, k can itself be a variable. Measure  theoretic notation in (1) would of course 

concisely accommodate all these possibilities, but the essential message can be expressed 

without it. We use the terms distribution and density interchangeably. 

Markov Chain Monte Carlo 

  We introduce MCMC as a method for evaluating expressions of the forms of (1). We 

begin by describing its constituent parts : Monte Carlo integration and Markov chains. We 

then describe the general form of MCMC given by the Metropolis-Hastings, and a special 

case : the Gibbs sampler. 
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Monte Carlo Integration 

  Monte Carlo integration evaluates E[f(X)] by drawing sample {Xt, t = 1, … , n} from 

(°) and then approximating 

   E[f(X)]  
1
n

1

n

t 

 f(Xt). 

  So the population mean of f(X) is estimated by a sample mean. When the samples 

{Xt} are independent, laws of large numbers ensure that the approximation can be made as 

accurately as describe  by increasing the sample size n. Note that here n is under the control 

of the analyst, it is not the size of a fixed data sample. 

  In general, drawing samples {Xt} independently from (°) is not feasible since (°) 

can be quite nonstandard. However, the {Xt} needs not necessarily be independent. The {Xt} 

can be generated by any process which,= loosely speaking, draws samples thought the 

support of (°) in the correct proportions. One way of doing this is through a Markov chain 

having (°) as its stationary distribution. This is then Markov chain Monte Carlo. 

The Metropolis-Hastings Algorithm 

  Suppose we generated a sequence of random variables. {X0, X1, … }, such that at 

each time t  0, the next state Xt+1 is sampled from a distribution P{Xt+1 | Xt} which depends 

only on the current state of the chain, Xt. That is, given Xt, the next state Xt+1 does not 

depend further on the history of the chain {X0, X1, … , Xt–1}. 

  This sequence is called a Markov chain, and P(° | °) is called the transition kernel of 

the chain. We will assume that the chain is time-homogeneous, i.e., P(° | °) does not depend 

on t. 

  Thus, after a sufficiently long burn-in of say m iterations, points {Xt; t = m+1, … , n} 

will be dependent samples approximately from (°). We can now use the output from the 

Markov chain to estimate the expectation E[f(X)], where X has distribution (°). Burn-in 

samples are usually discarded for this calculation, given an estimator 

   f  = 
1

n m

n

t

t m 1

f (X )
 

 .               (2) 

  This is called an ergodic average. Convergence to the required expectation is ensured 

by the ergodic theorem. 

  Equation (2) shows that a Markov chain can be used estimate E[f(X)], where the 

expectation is taken over its stationary distribution (°). This would seem to provide the 

solution to our problem, but first we need to discover how to construct a Markov chain such 

that its stationary distribution (°) is precisely our distribution of interest (°). 

  Constructing such a Markov chain is surprisingly easy. We describe the form due to 

Hastings (1970), which is a generalization of the method first proposed by Metropolis et al. 

(1953). For the Metropolis-Hastings algorithm, at each time t, the next state Xt+1 is chosen by 

first sampling a candidate point Y from a proposal distribution q(° | Xt). The candidate point 

Y is then accepted with probability (Xt, Y) where 
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   (X, Y) = min(1, 
(Y)q(X|Y)

(Y)q(Y|X)



 ).            (3) 

  If the candidate point is accepted, the next state becomes Xt+1 = Y. If the candidate is 

rejected, the chain does not move, i.e., Xt+1 = Xt. 

  Thus the Metropolis-Hastings algorithm is extremely simple: 

   Initialize  X0;  set  t = 0 

   Repeat{ 

      Sample a point Y from q(° | Xt) 

      Sample a uniform (0, 1) random variable U 

      If U (Xt, Y) set  Xt+1 = Y 

       otherwise set Xt+1 = Xt 

      increment t 

     }. 

  Remarkably, the proposal distribution q(° | °) can have any form and the stationary 

distribution of the chain will be (°). 

  This can be seen from the following argument. The transition kernel for the 

Metropolis-Hastings algorithm is 

   P{Xt+1 | Xt}  =  q(Xt+1 | Xt)  (Xt+1 | Xt)  

         + I(Xt+1 = Xt) [1 – q(Y | Xt) (Xt, Y) dY]   (4) 

where I(°) denotes the indicator function (taking the value 1 when its argument is true, and 0 

otherwise). The first term in (4) arises from acceptance of a candidate Y = Xt+1, and the 

second term arises from rejection, for all possible candidates Y. Using the fact that 

   (Xt) q(Xt+1 | Xt) (Xt | Xt+1)  = (Xt+1) q(Xt | Xt+1) (Xt+1 | Xt) 

which follows from (1.3), we obtain the detailed balance equation :

   (Xt) P(Xt+1 | Xt)  = (Xt+1) P(Xt | Xt+1).         (5) 

  Integrating both sides of (1.5) with respect to Xt gives : 

   (Xt) P(Xt+1 | Xt) dXt  = (Xt+1).           (6) 

  The left-hand side of equation (6) gives the marginal distribution of Xt+1 under the 

assumption that Xt is from (°). Therefore (6) says that if Xt is from (°), then Xt+1 will be 

also. Thus, once a sample from the stationary distribution has been obtained, all subsequent 

samples will be from that distribution. This only proves that the stationary distribution is (°), 

and is not a complete justification for the Metropolis-Hastings algorithm. A full justification 

requires a proof that P
(t)

(Xt | X0) will converge to the stationary distribution. 

  So far we have assumed that X is a fixed-length vector of k continuous random 

variables. There are many other possibilities, in particular X can be variable dimension. For 
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example, in a Bayesian mixture model, the number of mixture components may be variables, 

each component possessing its own scale and location parameters. In this situation, (°) must 

specify the joint distribution of k and X, and q(Y | X) must be able to propose moves between 

spaces of differing dimensions. Then Metropolis-Hastings is as described above, with 

formally the same expression (3) for the acceptance probability, but dimension matching 

conditions for moves between spaces of differing dimensions must be carefully considered. 
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