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Direct Products and Direct Sums of Modules 

 

Marlar Thwin
1
 

 

Abstract 

The objects of study in this paper are modules over arbitrary rings, and they can be thought of as 

generalizations of vector spaces and abelian groups. Firstly, some basic definitions, including 

those of a module and a module homomorphism were introduced. Finally, the theorems and 

examples of direct product and direct sum on module homomorphism were proved. 
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INTRODUCTION 

Modules are central to the study of commutative algebra and homological algebra. 

Moreover, they are used widely in algebraic geometry and algebra. In a vector space, the 

scalars taken from a field act on the vectors by scalar multiplication, subject to certain rules. In 

a module, the scalars only need belonging to a ring, so the concept of a module is a significant 

generalization. Much of the theory of modules is concerned with extending the properties of 

vector spaces to modules. However, module theory can be much more-complicated than that of 

vector spaces. 

  

 Basic Concepts of a Module 

Definition.[1]   Let R be a ring, and let M be an abelian group. Then M is called a left              

R-module if there exists a scalar multiplication : R M M    denoted by (r,m) rm  , for all 

r R  and m M , such that 

(i) 1 2 1 2r(m m ) rm rm          Distributivity 

(ii) 1 2 1 2(r r )m r m r m          Distributivity 

(iii) 1 2 1 2r (r m) (r r )m         Associativity 

(iv) 1.m   m         Identity. 

 The fact that the abelian group M is a left R-module will be denoted by RM. 

Let A be an R-module and B a nonempty subset of A. Then B is called a submodule of 

A if (i) B is an additive subgroup of A (ii) b B,  r R     rb B . 

 If B is a submodule of an R-module A, then A
B  together with the operations 

(x B) (y B) (x y) B       and (x B)r xr B    for x B , y B  A
B and r R  is called 

the factor module or the quotient module of A. 

 Let A and B be R-modules. A mapping f : A B  is called a module homomorphism, 

if for all a,b A , r R , for f (a b) f(a) f(b)    and f (ra) rf (a) . 
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Remarks 

(i) If R is a division ring, then f is called a linear transformation. 

(ii) If f is injective, then f is called a monomorphism. 

(iii) If f is surjective, then f is called an epimorphism. 

(iv) If f is bijective, then f is called an isomorphism. 

(v) A homomorphism from a group G to itself is called an endomorphism of G. 

(vi) An isomorphism from a group G to itself is called an automorphism of G. 

 

Theorem.[2] (Fundamental homomorphism theorem) 

 Let M and N be left R-modules. If f : M N  is any R-homomorphism, then 

f (M) M ker(f ) . 

Proof:   Let R be a ring, M and N be left R-module, let Rf Hom (M,N) . 

Thus f : M N  is an R-homomorphism. 

Moreover, ker (f)  x M / f (x) 0   . 

Define a mapping : M ker(f ) f (M)   by (m ker(f )) f (m)    for all m M . 

Take any 1 2m ,m M , 1m ker(f ) M ker(f )   and 2m ker(f ) M ker(f )   

 1m ker(f ) 2m ker(f )   

1 2m m ker(f )  

 1 2f (m m ) 0  

1f (m )  2f m  

So   is well-defined. 

Consider  1 2((m ker(f )) (m ker(f )))    1 2((m m ) ker(f ))     

 1 2f (m m )   1 2f (m ) f m   

 1 2(m ker(f )) (m ker(f ))     Again,

1(r(m ker(f )))  1(rm ker(f ))   1f (rm ) 1r (m ker(f ))   , r R . 

Therefore   is R-homomorphism. 

Suppose   ker(f))(m1
 ker(f))(m2   

 1f (m ) 2f (m )  

 1 2f (m m ) 0  

Thus 1 2m m M   and 1 2m m ker(f )  , 1m ker(f ) 2m ker(f )  . So   is injective. 

Take any x f (M) , m* M  such that f (m*) x . 

m* ker(f) M ker(f )   and (m* ker(f)) f(m*) x    . 

Thus   is surjective. Hence  is isomorphism from f(M) onto M ker(f ) . 

That is f (M) M ker(f ) . 
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Theorem. [3] Let A be an R-module, I be a submodule of ker (f), f : A  𝒮 be an R-module 

homomorphism and let f : A I   𝒮 be defined by f (a I) f(a)   for every a A . Then 

(i) f  is a unique homomorphism, Im f   Im f and Iker(f))fker(  . 

(ii) f  is an isomorphism if and only if ker(f)I   and f is an epimorphism. 

(iii) fImker(f)A  . 

Proof:   See [3]. 

Finitely Generated Submodules 

 

Definitions.[3]  If X is a subset of a module A over a ring R, then the intersection of all 

submodules of A containing X is called the submodule generated by X (or spanned by X). 

(i)  If X is finite, and X generates the module A, A is said to be finitely generated. 

(ii) If X   , then X clearly generates the zero module. 

(iii) If X consists of a single element,  X a , then the submodule generated by X is called 

the cyclic (sub) module generated by a. 

If A is an R-module and  iB | i I  is a family of submodules of A, then the submodule 

generated by i
i I

X B


   is called the sum of the modules iB .If the index set I is finite, the sum 

of 1 2 nB ,B ,...,B  is denoted by 1 2 nB B ... B   . 

 

Theorem.[3]  Let R be a ring, A an R-module, X a subset of A and  iB | i I  be a family of 

submodule of A. Then the sum of  iB | i I  consists of all finite sums

kkn21 iiiii Bb,b...bb  , i.e, sum of  

 iB | i I 
k k k

n

i k i i
k 1

b | n N*,i I,b B



  
   

  
 . 

Proof:   Sum of  iB | i I   the submodule of A generated by  

iX B 

s t

i i j j i, j i j
i 1 j 1

r a n b | s, t N*,a b X,r R,n Z

 

 
 

      
  

  . 

Therefore each i ia B  for some i I  and since iB  is a submodule of A, we have i i ir a B . 

Similarly each j jb B  for some j I  and since jB  is a submodule of A, we have j j jn b B . 

Therefore the sum of  iB | i I  consists of all finite sums 
1 2 ni i ib b ... b    with 

k ki ib B . 

 

Definitions.[3]  Let  iA | i I  be a family of nonempty sets. The (external) direct product 

i

i I

A



  of that family is defined as  i i i i

i I

A {a | i I} | a A  for every i I



    . We can write 

 ia | i I  by  ia  and define addition on i

i I

A



  by 

     i i i ia b a b    for 



Ii

iii A}{b},{a . 
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The (external) direct sum i
i I

A



  of the family  i i I
A


 is defined as  

ii i i i i A
i I i I

A {a | i I}|{a } A ,a 0  for finitely many i

 

  
    
  

  . 

Thus i i
i I i I

A A

 

  . 

 

Theorem.[3] Let R be a ring R and  iA | i I  be a nonempty family of R-modules. i

i I

A



  is 

the direct product of the abelian group iA  and i
i I

A



  the direct sum of the abelian groups iA . 

Then 

(i) i

i I

A



  is an R-module with the action of R given by    i ir a ra . 

(ii) i
i I

A



  is a submodule of i

i I

A



 . 

(iii) For each k I  , the canonical projection k i k

i I

: A A



   is an R-module epimorphism. 

(iv) For each k I , the canonical injection k k i
i I

I : A A



  is an R-module monomorphism. 

Proof:   (i) Take any 



Ii

iii A}{b},{a  and r,s R . 

Then      i ir a b i ir{a b }   

 i i{r(a b )}   

 i i{ra rb }   

 i i{ra } {rb }   

 i(r s){a } i{(r s)a }   

 i i{ra sa }   

 i i{ra } {sa }   

 i ir{a } s{a }   

 i(rs){a } i{(rs)a }  

 i{r(sa )}  

 ir{sa }  

 ir(s{a }) . 

Therefore i

i I

A



  is an R-module under the above operations. 

(ii) Since 
iA i

i I

{0 } A



 , we have i
i I

A



  . 
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Let 



Ii

iii A}{b},{a and r R . 

If  i1 i AI i I | a 0    and  i2 i AI i I | b 0   , then 1I  and 2I  are finite sets and 

ii i Aa b 0  for every i 2i I I  . 

Therefore    
ii i A 1 2i I | a b 0 I I      which is finite. 

This implies that i i i i i
i I

{a } {b } {a b } A



    . 

Similarly,  ii A 1i I | r a 0 I    which is finite. 

Therefore i i i
i I

r{a } {ra } A



  . 

So i
i I

A



  is a submodule of i

i I

A



 . 

(iii) For k I , k i k

i I

: A A



   is defined by  k i k{a } a  . 

Let 



Ii

iii A}{b},{a and r R . 

  k i i{a } {b }   k i i{a b }    

 k ka b   

    k i k i{a } {b }     

  k ir{a }  k i{r a }   

 kra  

  k ir {a }  . 

So k  is an R-module homomorphism. 

Now, we will show that k  is surjective. 

Take any element kx A  and let i{c } be an element of i

i I

A



  such that kc x . 

Then  k i k{c } c x   . 

Therefore k  is an R-module epimorphism. 

(iv) For k I , k k i
i I

l : A A



  is defined by k il (x) {a }  where ka x  and 
ii Aa 0  for 

i k . Take any kx, y A  and r R . 

 kl (x y) i{b }      kb x y   and 
ii Ab 0  for i k  

 kl (x y) i i{c } {d }    

where kc x  and 
ii Ac 0 , kd y  and 

ii Ad 0  for i k  

 kl (x y) k kl (x) l (y)   
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 kl (rx) i{c }  where kc rx , 
ii Ac 0  for i k  

 ir{f }  where kf x , 
ii Af 0  for i k  

 krl (x) . 

So kl  is an R-module homomorphism. 

Now, we will show that kl  is an injective. 

 k kl (x) l (y) i i{c } {d }   where kc x  and 
ii Ac 0 , kd y  and 

ii Ad 0  for i k  

 k kc d   

 x y   

Therefore kl  is an R-module monomorphism. 

 

Proposition.[2] Let {M }  be a collection of left R-modules indexed by the set I, and let N be 

a left R-module. For each I , 
I

P : M M  
 , P  is a projection. Then for any set 

I{f }   of R-homomorphisms such that f : N M   for each I , there exists a unique R-

homomorphism 
I

f : N M
  such that P f f   for all I . 

Proof:   Let I{f }   be any set of R-homomorphism such that f : N M   for each I . 

Let 
I

f : N M
 . 

If x N , then we define f(x) by letting its components  f (x) f (x)
 for each I . 

But   P f (x)  f (x)


  

  P f (x) f (x)  

 (P f )(x) f (x) , x N   

Thus P f f . 

Hence f can be defined to satisfy P f f   for all I .  

Take any x,y N  and r R . 

Thus x y N   and rx N  since N is a left R-module. 

Hence   f (x y)


 f (x y)   

 f (x) f (y)    

    f (x) f (y)
 

  . 

For each I , the 
th  component of f (x y)  is the sum of the 

th  component of f(x) and 

the 
th  component of f(y). 

 f (x y) f(x) f(y)   

  f (rx)


f (rx)  

 rf (x)  

  r f (x)


 . 

For each 
th  component of f(rx) is the product of r and the 

th  component of f(x). 

 f (rx) rf (x) . 

Hence f is an R-homomorphism. 
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Let 
I

g : N M
  be another R-homomorphism such that p g f   for all I . 

 p g p f , I  

 (p g)(x) (p f )(x) , x N  . 

 p (g(x)) p (f (x))  

  g(x)
  f (x)


 , x N   and I . 

 g(x) f (x)  

 g f  

Thus f is a unique R-homomorphism. 

 

Example. Let M be a left R-module. It can be shown that M is finitely generated if there exists 

a submodule N M  such that N and M
N

 are both finitely generated.  

 Let M be a left R-module. Let N M  be a submodule of M such that N and M
N

 are 

both finitely generated. 

Therefore the elements 1 2 ny , y ,..., y  generate N and 1 2 kx ,x ,..., x  generate M
N

 where 

i ix x N  . 

Take any x M . 

In M
N

,  x x N   

 
k

i i
i 1

a x



  

 
k

i i
i 1

a (x N)



   

 
k

i i
i 1

((a x ) N)



   

 
k

i i
i 1

( a x ) N



  . 

We get x x N 
k

i i
i 1

( a x ) N



  . So 
k

i i
i 1

(x a x ) N



  . 

Since 1 2 ny , y ,..., y  generate N, 

k n

i i j j
i 1 j 1

x a x b y

 

   . 

Therefore 

k n

i i j j
i 1 j 1

x a x b y

 

   . 

Then M is finitely generated. 
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Example. It can be proved that the projection mapping 
I

p : M M  
  defined by 

p (m) m   is an R-homomorphism. 

 For each index I , the projection mapping 
I

p : M M  
  is defined by 

p (m) m  , 
I

m M
 . 

m 1 2 n(m ,m ,...,m ,...)  

1 1p (m) m , 2 2p (m) m , …, n np (m) m ,… 

Take any 
I

x, y M ,r R
  . 

 x (x ) 1 2 n(x ,x ,...,x ,...)  

 y (y ) 1 2 n(y ,y ,..., y ,...) . 

 p (x y)  (x y)   

 x y   p (x) p (y)    

 p (rx) (rx)  

 rp (x)  

Thus p  is an R-homomorphism. 

Example.  For each I  an inclusion mapping 
I

i : M M  
  is defined by 

i (x) m   where m x   and m 0   for all x M  and     , it can be proved that i  is 

an R-homomorphism. For each I  an inclusion mapping 
I

i : M M  
  is defined 

for all x M  by i (x) m  . 

Take any x, y M , I  and r R . 

x y M   and rx M  since M  is a module. 

 i (x) (0,0,...,x,0,...)  

 i (y) (0,0,..., y,0,...)  

 i (x y)  (0,0,...,x y,0,...)   

 (0,0,...,x,0,...) (0,0,..., y,0,...)   

 i (x) i (y)    

Again,  i (r x) (0,0,..., rx,0,...)  

 r(0,0,...,x,0,...)  

 r i (x)  

Therefore i  is an R-homomorphism. 

 

RESULTS AND CONCLUSION 

 This theory is applied to obtain the structure of abelian group and the rational canonical 

and Jordan normal forms of matrices. The basic facts about rings and modules are given in full 

generality, so that some further topics can be discussed, including projective modules and the 

connection between modules and representations of groups. Furthermore, the results of this 

paper showed how the module structure of algebra plays a vital role in homomorphic signal 

processing in branch of engineering mainly in information technology, electronics and 

telecommunication engineering, computer science, etc. 
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