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Abstract 

In this paper, we present the definitions and background information about posets. Then we 

construct the Hasse diagram for the posets and describe the indicated sets and indicated relations 

of posets with Hasse diagram. Next, we discuss the notions of isomorphic, dual and self dual of 

posets. Moreover, we study order ideal of posets, and we will see how these objects relate to 

posets. 
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INTRODUCTION 

This paper is organized as follows: In first part, we present basic definitions and 

examples of posets. And then we describe some basic properties and results on the posets. In 

second part, we discuss the complete description of this poset is given for isomorphic of 

posets. In third part, we study the notions of dual of posets and some results. In fourth part, we 

consider the order ideal of posets and some related fact.  In the final part, we indicate some 

conclusions and further research directions. 

 

Posets and Simple Results 

In this part, we present the basic definitions and examples of posets. And then we 

discuss the properties of posets. 

Definitions.[1] A non empty set P, together with a binary relation R  is said to form a partially 

ordered set or a poset if the following conditions hold: 

P1 : Reflexivity : aRa  for all a P  

P2 : Anti-Symmetry : If , ,aRb bRa  then  ( ,  )a b a b P   

P3 : Transitivity : If , ,aRb  bRc  then  ( ,  ,  )aRc a b c P  

It is denoted by ( , )P R .We generally use the symbol   in place of R. We write a b  if 

a b and .a b  

Examples (i) The set ℕ of natural numbers forms a poset under the usual .  Similarly, the 

integers, rationals and real numbers also form posets under usual .  

(ii) The set  ℕ of natural numbers under divisibility forms a poset. Thus here, a b means 

|a b  (a divides b).  

(iii) Let F be a collection of sets ,  ,  ,  ... .A B C  Then F under "contained in"   relation 

forms a poset.  
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Definitions.[2] If X is a poset, Y X  is a chain or a totally ordered set or a toset if for all 

1 2,  y y Y  either 
1 2y y  or 

2 1y y (in other words if Y is a poset in which every two members 

are comparable). Y is an antichain if any two distinct elements of Y are incomparable. 

Remark. Two elements of a poset may not be comparable. For instance, 2 and 3 are not 

comparable in Example (ii) above although these are comparable in Example (i). The posets in 

Example (i) are all chains whereas those in Example (ii) and (iii) are not chains. Clearly also if 

,x y  are distinct elements of a chain then either x y  or y x . 

Proposition.[1]  A non empty subset S of a poset P is a poset and if P is a chain then so is S 

(under the same relation, restricted to S).  

Proof. For ,  ,  a b c S  implies ,  ,  .a b c P  Thus a a  for all a. Moreover, ,a b  b a  imply 

a b and ,a b  b c  imply .a c  Therefore, S is a poset. Again if P is a chain then S would 

also be a chain ( ,a b S  implies ,a b P  so ,  a b  are comparable). 

Proposition.[1] In a poset a a  for no a and a b , b c  imply .a c  

Proof. Suppose there exists some element a in a poset P such that .a a  Then by definition, 

a a  and .a a  By anti-symmetry a a , a a  imply .a a  Thus, we get a contradiction. 

 Again, a b , b c  imply  ,a b ,a b  

                                         ,b c .b c  

So a b , b c  imply a c  (by transitivity). 

If ,a c  then c b , b c  imply ,b c  a contradiction. Hence .a c  

Definition.[3] For , ,x y P  when x y  and there does not exist z P  such that ,x z y   we 

say that y covers x.  

Example (i). Consider the set  1,  2,  3 .  Let B3 = P ({1, 2, 3}) denote the power set of 

 1,  2,  3 ,  that is, all subsets of  1,  2,  3 ,  with the partial ordering given by set inclusion, .   

Thus               3 , 1 , 2 , 3 , 1,  2 , 1,  3 , 2,  3 , 1,  2,  3 .B    

Let's carefully go through the definition to see that   in 3B  satisfies all the properties of a 

partial order relation. We rely on standard results from set theory.  

Reflexivity: For any element 
3S B , it follows from the definition of   that ,S S  since 

every set has itself as a subset.  

Anti-symmetry: Let 3,  S T B . If S T  and ,T S  then by definition of set equality .S T  

Transitivity: Let 3,  ,  ,R S T B  suppose R S  and .S T  It is easy to show that this implies 

.R T  Thus 3B  is a poset under set inclusion. In fact, any collection of subsets forms a poset 

under .  We can generalize 3B  to .nB  

Now, consider  1  and  1,  3 .  Since    1 1,  3 ,  these two elements are comparable. Next, 

consider  1,  3  and  2,  3 ,  neither of these elements are subsets of the other. Hence, they are 

incomparable. We consider  1,  2  covers  1 ,  but although    1,  2,  3 1 ,   1,  2,  3  does not 

cover  1 ,  since we have      1 1,  2 1,  2,  3 .   
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We can represent a poset as a directed graph with elements of the poset as nodes, where 

,  x y P  have an edge between them in the graph if x covers y P . This graph is called the 

Hasse diagram of P. The Hasse diagram of 3B  is given in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Hasse diagram of 3B  

As we can see in Figure 1, instead of using edges with arrows, the Hasse diagram is drawn 

such that if x covers y P  then x is drawn above y in the diagram, with an edge between them. 

(ii) The integers are a poset with the usual ordering .  This poset's Hasse diagram is an 

infinite line of elements, as seen in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Hasse diagram for the integers  

 

Definition.[1] Let P be a poset. If there exists an element a P  such that x a  for all x P  

then a is called greatest or unity element of P.  It is generally denoted by u.  

Proposition.[1] The greatest element of poset P (if it exists) is unique.  

Proof. Let x and y be greatest elements of poset P. By definition of greatest, we must have 

y x  as x is the greatest element of poset P and y belongs to poset P. Likewise .x y  By anti-

symmetry .x y  Thus, any greatest element is unique.  

Definition.[1] Let P be a poset. If there exists an element b P  such that b x  for all x P  

then b is called least or zero element of P.  It is generally denoted by 0. If a poset P has least 

and greatest elements, we call it a bounded poset. Indeed 0 x u   for all .x P  
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Proposition.[1] The least element of poset P (if it exists) is unique.  

Proof. Let x and y be least elements of poset P. By definition of least, we must have x y  as x 

is the least element of poset P and y belongs to poset P. Likewise .y x  By anti-symmetry 

.x y  Thus, any least element is unique. 

Example. Let  1,  2,  3 .X   Then (P (X),  ) is a poset. Let       , 1,  2 , 2 , 3 .A    Then 

 ,  A   is a poset with   as least element. A has no greatest element. Let 

        1,  2 , 2 , 3 , 1,  2,  3 .B   Then B has greatest element  1,  2,  3  but no least element. If 

      , 1 , 2 , 1,  2 C  then C has both least and greatest elements namely,   and  1,  2 .  

Thus C is bounded poset. Again       1 , 2 , 1,  3D   has neither least nor greatest element. 

Definition.[1] An element a in a poset P is called maximal element of P if a x  for no .x P  

Remarks. 

(i) A poset may not have a maximal element. For instance, the natural numbers under usual   

have no maximal element.  

(ii) A poset may have more than one maximal element. In the poset  2,  3, 4,  6  under 

divisibility 4 and 6 are both maximal elements (none being the greatest). 

(iii) Maximal element may not be the greatest element as seen in (ii) above. 

(iv) Greatest element is the unique maximal element of a poset P. Indeed, suppose a is the 

greatest element of P. Then   .x a x P    If a is  not maximal, then there exists some y P  

such that .a y  That is, ,  .a y a y   But by the definition of greatest, we get y a  and so 

,y a  a contradiction. Hence, a is maximal. Again, suppose b is another maximal element of 

P. Since a is greatest and ,  .b P b a   But b a  and so ,b a  a condraction as b is maximal. 

Hence, greatest element is unique maximal element of a poset P. 

Definition.[1] An element b in a poset P is called a minimal element of P if x b for no x in 

P.   

Remark. We can state and prove similar results for minimal elements as done for maximal 

elements. 

Theorem.[1] If S is a non empty finite subset of a poset P, then S has maximal and minimal 

elements. 

Proof. Let 
1 2,  ,  ... ,  nx x x  be all the distinct elements of S in any random order. If 

1x  is 

maximal element, we are done. If 
1x  is not maximal, then there exists some ix S  such that 

1 .ix x  If ix  is maximal, we are done. If not, there exists some jx S  such that .i jx x  

Continuing like this, we'll reach a stage where some element will be maximal. Similarly, we 

can show that S has minimal elements. 

 

Isomorphic of Posets 

In this part, we discuss about isomorphic of posets, which are the main objects of study 

in the next part. 



Hinthada University Research Journal 2022,Vol.12, No. 2          107 

 

 

Definitions.[1]  Let ( , )P R  and ( , )Q R  be two posets. A one-one onto map :f P Q  is 

called an isomorphism if ( ) ( ),   ,  .x R y f x R f y x y P   We say that P and Q are called 

isomorphic of posets. We write, in that case, .P Q  A mapping :f P Q  is called isotone or 

order-preserving if ( ) ( ).  x y f x f y   

Theorem.[1]   A mapping :f P Q  is an isomorphism if and only if f is isotone and has an 

isotone inverse. 

Proof. Let :f P Q  be an isomorphism. Then f  being one-one, onto, 1f   exists and is one-

one, onto. Again, by definition of isomorphism, f will be isotone. We show 1 :f Q P   is also 

isotone. Let 
1 2,  y y Q  where 1 2.y y  Since f is onto, there exists 1 2,  x x P  such that 

1 1 2 2( ) ,  ( ) f x y f x y
1 1

1 1 2 2( ),  ( ).   x f y x f y   

Now 
1 2 1 2( ) ( )y y f x f x     

  1 2x x      

  
1 1

1 2( ) ( )f y f y     

  1f   is isotone. 

Conversely, let f  be isotone such that 1f   is also isotone. Since 1f   exists,  f  is one-one, onto. 

Again, as f is isotone 
1 2 1 2( ) ( ),x x f x f x     1 2, .x x P   

Also 1f   is isotone implies 

 1 1

1 2 1 2( ) ( ) ( ( )) ( ( ))f x f x f f x f f x       

   1 2x x    

thus           
1 2 1 2( ) ( ).  x x f x f x   

Hence f  is an isomorphism. 

Dual of Posets 

In this part, we now present the concept of dual of posets

Definition.[1] Let  be a relation defined on a set X. Then converse of  (denoted by  ) is 

defined by ,   ,  .a b b a a b X    

Theorem.[1] If a set X forms a poset under a relation ,  then X forms a poset under ,  the 

converse of .  

Proof. a a  as a a  for all a X shows   is reflexive. Let a b  and .b a  Then b a and 

a b  i.e., a b  and b a  imply .a b  Thus   is anti-symmetric. Let a b  and .b c  Then 

,b a  c b  or ,c b  .b a  So that c a  implies a c or that   is transitive and hence is a partial 

ordering. Thus, X  forms a poset under a relation .  
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Definition.[1] If ( ,  )X   be a poset, then the poset ( ,  ),X   where X X  and   is converse 

of   is called dual of X. 

Theorem.[1]  If ( ,  )X   be a poset, then ,X X  where X  is dual of X . 

Proof. Define :f X X  such that ( ) ,  ,f x x x X   f is then clearly a well defined one-one 

onto map. Again, x y y x  x y ( ) ( ).f x f y  Shows f is an isomorphism. (   being 

converse of  ). Thus .X X  

Definition.[1]  If a poset X is isomorphic to its dual X , then X is called self dual. 

Example. Let .X  Then the poset (P (X),  ) of all subsets of X is self dual as we can 

define f : P (X)  P(X) such that ( ) .f A X A   If ( ) ( )f A f B  implies X A X B    so 

A B  or that f  is one-one. Ontoness of f is obvious. Again A B in P (X)  X  A  X  B 
( ) ( ) f A f B  in P(X). Thus f is an isomorphism and hence P (X)  P(X). Therefore, the 

poset (P (X),  ) is self dual. 

Definition.[1] Let A and B be two posets. Then we can show that  ( , ) | ,     A B a b a A b B  

forms a poset under the relation defined by 1 1 2 2( , ) ( , )a b a b
1 2a a   in A,

1 2b b in B. It is 

clear that the three relations   occurring above are different, being the respective relations in 

A B ,  A and B. 

Reflexivity: ( , ) ( , )a b a b  for all ( , ) a b A B  as a a  in A and b b  in B for all ,a A  

.b B   

Anti-symmetry: Let 1 1 2 2( , ) ( , )a b a b  and 2 2 1 1( , ) ( , ).a b a b  Then 
1 2 1 2,  a a b b    and so 

1 2 1 2,  . a a b b  Thus 1 1 2 2( , ) ( , ).a b a b  

Transitivity: Let 1 1 2 2( , ) ( , )a b a b  and 
2 2 3 3( , ) ( , ).a b a b  Then 

1 2 1 2,  a a b b   and 

2 3 2 3,  a a b b   and so 1 3a a  and 1 3.b b  Thus 
1 1 3 3( , ) ( , ).a b a b  

We thus conclude that product of two posets is a poset. It is also called the direct or cardinal 

product of posets.  

Theorem.[1] The cardinal product of two self dual posets is self dual. 

Proof. Let A and B be the given self dual posets. Let :f A A  and :g B B be the 

isomorphisms. Define :h A B A B    such that (( , )) ( ( ), ( ))h a b f a g b  then h is well 

defined, one-one map as  

1 1 2 2 1 2 1 2( , ) ( , ) ,a b a b a a b b     

                          
1 2 1 2( ) ( ),  g( ) ( )f a f a b g b     

                          
1 1 2 2( ( ),g( )) ( ( ), ( )) f a b f a g b   

                          
1 1 2 2(( , )) (( , )).h a b h a b   

Again, for any ( , ) ,x y A B  since and 
1 1,  f g 

 exists as f, g are one-one onto, thus we get h is 

onto. 
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Next, 
1 1 2 2 1 2 1 2( , ) ( , ) ,a b a b a a b b     

                                   
1 2 1 2( ) ( ),  g( ) ( )f a f a b g b    

                                   
1 1 2 2( ( ),g( )) ( ( ), ( )) f a b f a g b  

                                   
1 1 2 2(( , )) (( , )).h a b h a b   

Thus, h is the required isomorphism and .A B A B    Therefore, the cardinal product of two 

self dual posets is self dual. 

 

ORDER IDEAL OF POSETS 

In this part, we introduce the notions of order ideal of posets. 

Definition.[3]  An order ideal of P is a subset I of P such that if x I  and y x  in P, 

then .y I  This means that we can choose a subset of P, and form an order ideal consisting of 

that subset, as well as everything "below" those elements in P.  

Examples. (i) Consider the poset P in Figure 3. For any subset S of the elements of P, we can 

form an order ideal  I S  by taking S and everything below it. Some examples of order ideals 

are     2,  4 4,  3,  2,  1I  and     6,  1 6,  4,  3,  1 .I  

 

 

 

 

 

Figure 3. A Poset P 

However,  5,  2,  1J  is not an order ideal because 3 5  in P, but 3 . J  But  

    5,  3,  2,  1 2,  5  J I  is an order ideal. The set of order ideals of P is {,{1}, {3}, {1, 

3}, {1, 2}, {3, 5}, {3, 4}, {1, 2, 3}, {1, 3, 5}, {1, 3, 4}, {3, 4, 6}, {3, 4, 5}, {1, 2, 3, 4}, {1, 2, 

3, 5}, {1, 3, 4, 5 }, {1, 3, 4, 6}, {3, 4, 5, 6}, {1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 3, 4, 5, 6},         

{1, 2, 3, 4, 5, 6} 

(ii) It is a fact that for any given order ideal I, there exists an antichain S such that ( ).I I S  

    1,  2,  3,  4,  5 2,  4,  5 I I , where  2,  4,  5  is an antichain in P. 

Definition.[3] The set of all order ideals of P, ordered by inclusion, forms a poset denoted 

).(J P  

Example. Consider the poset  1,  2,  3P , with 2 3 , as seen in Figure 4. The set of order 

ideals ordered by inclusion gives us the poset            ( ) , 1 , 2 , 1,  2 , 2,  3 , 1,  2,  3 . J P  
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                                           A poset P                                 J P  

Figure 4. A poset P and its corresponding poset of order ideals,  J P  

 

RESULTS AND CONCLUSIONS 

 According to results of the present study, it is easy to find the set of minimal elements 

and maximal elements of a poset. In a general poset there may be no maximal element, or there 

may be more than one. But in a finite poset there is always at least one maximal element and 

minimal element. And then it is found that the greatest element and least element of a poset are 

unique. Using the notion of isomorphism, we discuss the relation between the isomorphism, 

isotone and isotone inverse. By the concepts of duality, we study the dual of dual poset is a 

poset and the product of two posets is a poset. It is also called the direct or cardinal product of 

posets. The definition can be extended to product of more than two posets in a similar way. 

Moreover, the cardinal product of two self dual posets is self dual. At the end of this paper, we 

find a poset and its corresponding poset of order ideal. Partially ordered sets arise very 

frequently in every life. Often it becomes natural and necessary to compute a ranking of the 

posets that respects the partial order’s comparability. Moreover, we will explore a particular 

type of poset known as a lattice. Lattices have a number of applications, and they provide one 

way for us to introduce and become familiar with Boolean Algebra, a field of prime 

importance to computer science. 
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