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Flow Visualizations Method for Flow Past a Flat Plate  
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Abstract 

We study one of the external flows that past a plate to include various angles of attack. The 

problem was solved using elliptic coordinate. The problem of running through a plate with 

different angles is calculated. The plate in this article is not just an ordinary plate, but a plate 

obtained from a perspective that makes it easy to see difficult streams. The streamlines are 

drawn. Lift and drag are analyzed from the streams of the resulting images.  
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INTRODUCTION 

 The present paper is to carry out experiments on boundary layers. Such experiments are 

needed to verify the positive effect that is inflicted by techniques to manipulate the boundary 

layer. In practice, it is still difficult to measure the velocity profiles within the boundary layer. 

The present study will compare results from the theory of boundary layers with the results 

from experiments in the simplest setting; a flat plate at zero degrees of incidence at modest 

Reynolds numbers. The measurements will be compared with the relations from theory to 

assess the accuracy at the measurements. In short, the goal of this study is to measure the 

velocity profile in the boundary layer of the flat plate and compare the results with the results 

from theory. 

Irrotational flow patterns around body of flap plate shape are the subject of this paper. 

It will be assumed that the fluid is inviscid and incompressible and the motion 2dimensional. 

The 2dimensional incompressible continuity equation guarantees the existence of a stream 

function, from which the velocity components can be derived as 

u = 
ψ

y




 ,   v =

x


. 

For irrotational motion, the stream function satisfies Laplace’s equation: 
2
 = 0. 

Likewise, the condition of irrotationality guarantees the existence of another scalar function , 

called the velocity potential, which is related the velocity components by  

u = 
x


 , v = 

y


. 

 And potential function satisfies Laplace’s equation : 
2
 = 0. We obtain  

x


 = 

y


 ,   


y


 = 

x


. 

 These are CauchyRiemann condition for (x,y)+ i(x,y) to be analytic function of the 

complex variable x+iy = z and so we can put 
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 (x,y)+ i(x,y) = f(x+iy) = f(z), 

where f is analytic function of z (Chorlton, 1967).  

 These facts can be useful for analyzing 2dimensional potential flow for certain kinds 

of the boundary conditions. If we can find a solution of Laplace’s equation for a simple 

boundary in zplane, we can apply any analytic mapping we choose, and map the boundary 

and streamlines to another complex plane. Since the streamlines conformed to the boundary in 

the original plane, they automatically conform to the transformed boundary in the transformed 

plane, and since the mapping is analytic, the transformed streamlines are solution of Laplace’s 

equation, just as were the streamlines in the original plane. Likewise the velocity potential 

maps from the original to the transformed plane. 

Elliptic coordinates 

If we look at that study from a different perspective, we can get a flat flow ahead of 

time. These are the various images that can be obtained by imaging using one technology.  

Further analysis reveals the lift and drag forces. Here we will use the properties of flow past a 

circle. In studying the streams, the mathematical terms of the streams are summarized as 

follows. The mapping of the plane z = x + iy  on the plane = +i  given by the relation 

 z = c cosh = c cosh (+i) (1) 

which may also be written as 

 (x + iy) =
2

c
(e

+i  
+  e

i
). 

 x + iy = c(cosh cos +  i  sinh sin). 

Separation of real and imaginary parts on both sides gives now  

 x = c cosh cos ,    y = c sinh  sin . 

 can be eliminated  by the use of  cos
2
 + sin

2
 = 1, resulting in  

 
22

2

coshc

x
+

22

2

sinhc

y
=1. (2) 

The elimination of   by the use of cosh
2
  sinh

2
 = 1, resulting in  

 
22

2

cosc

x


22

2

sinc

y
=1. (3)  

For constant , (2) represents an ellipse with the semiaxis 

 a = c cosh  ,  b = c sinh. 

Its eccentricity is given by 

 22 ba  =c (4) 

and thus independent of . Thus, if  varies, one obtains a system of confocal ellipses with foci 

x = c, y = o. 

On the other hand, for constant , (3) represents a hyperbola with a semiaxis 

 a = c cos,  b = c sin . (5) 

 Therefore independent of  and equal to that of ellipses given in (4). With variable 

parameter , (3) represents a system of hyperbolas, confocal among themselves and with the 

system of ellipses (Sommerfeld,1950). 
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It is of interest to consider the limiting parameter values  = 0 and =  in the family of 

ellipses: the value = 0 gives by (2) the focal line 

 y = 0,   c < x < c 

and the value  =  gives an infinity extended ellipse.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As regards the parameter , note the particular values 

  = 0,    =  
2


,   = . 

The value of  = 0 characterizes by (3), the part of the real axis to the right of c: y = 0, 

x > c.  = 
2


 corresponds to x=0, the hyperbola coincides with the yaxis.  =   gives the 

part of the xaxis to the left of c: y = 0,    x < c.  

In order to obtain a unique relation between the coordinates ,  and  the points of the 

x, yplane,  and  must be restricted to a certain domain.  

One way of doing this is to assign the values   0 <  <  to the upper halves of the 

hyperbolas, and the values   <  < 0   to the lower halves. By this rule the entire x, yplane 

is mapped on the strip to the ,plane 

 0 <  < +,        <  <    

indicated in above Fig-2. 

 Note that the one to one correspondence between the x, yplane and the ,strip does 

not include the boundary of the strip; either the upper or the lower half of the borderline must 

be omitted. Or one might also consider boundary points that are mapped on the same point in 

the x, yplane as identical (viz.0, ; 0, ).(Sommerfeld,1950) 

The problems arising from the flow past a plate will be treated by means of elliptic 

coordinates.  We shall use a complex potential of the form 

 +i = f(), where f() = const   sinh (6) 

Here,  is through to be related to z according to (1), so that f() becomes a complex function 

of z. 

x 

y 

=0 

=0 

=  

= 

=

 

=

 

 
 

 

= 

= 
=0 

Fig-1  The system of confocal ellipses  

and  hyperbolas =constant and 

= constant. 

Fig-2  The mapping of the zplane 

on the plane. 
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Flow past a vertical flat plate 

 The connection of elliptical coordinates ,  with Cartesian coordinates x, y is given 

by  

 x+iy = c cosh(+i). (7) 

Here c is half the focal distance of Fig-2 and, at the same time, half the length of the projection 

of our plate in the x,yplane; the plate is supposed to be infinite in  zdirection.   

 In elliptic coordinates the front and back sides of the plate are simultaneously given by  

 = 0,   <  <, 

corresponding to the infinitely narrow ellipse of  Fig-2. For these values the right member of 

(1) is real, hence y=0 and c < x < c.  

On the other hand, for 

  = 
2


,   0 <  <  

the right member of (7) becomes a positive or negative purely imaginary number, hence x = 0 , 

y > 0  and x= 0,y < 0, as seen in Fig.2. 

 Consider now the analytic function 

 +i = const sinh(+i). (8) 

Let const be equal to iqc and c > 0, where q is a real quantity having the dimension of a 

velocity. 

Now, +i is not only an analytic function of +i, but through (1) be analytic function 

of (x+iy) likewise. Consequently  and  may be interpreted as velocity potential and stream 

function (5). They satisfy such boundary conditions in the x, yplane as are required by the 

problem under consideration. The values of  and  along certain lines of the x, yplane have 

been listed in the following table, the auxiliary variables   and  playing the role of  

parameters:  

Table-1 Uniform flow 

,plane x , y - plane values of ,  

=0 x=c cos,  y = 0 =0, =qcsin 

=
2


 x=0,  y=c sinh <0 =0, =qc cosh>0 

=+
2


 x=0,  y=c sinh>0 =0, =qc cosh<0 

 x
2
+y

2
= 

4

c2

e
2

 =qx, =qy 

 

 The first three lines of this table are explained in our previous remarks, if one takes into 

account that the right member of (8) becomes real for  = 0 as well as for  = 
2


. As regards 

the last line, the effect of the limit  on x, y, etc. can be easily seen if one separates real 

and imaginary parts in (7) and (8). 

For large ,   x+iy =
2

c
e

+i    
=

 

2

c
e

  
(cos  + i sin). 
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Then  x = 
2

c
e


 cos,      y = 

2

c
e


sin  

and   = q
2

c
e


 sin,      = q

2

c
e

  
cos (9) 

in agreement with the last line of the table. 

 

 

 

 

 

 

 

 

 

Flow Visualization by the Transformation 

In this section we will study the flow over the flat plate using visualization method. The 

flow of streamline must be resolved. By physical meaning of flow, flow property is satisfied. 

The flow on the plate will be analyzed using the existing circular properties. Then the circle 

will be transformed into a flat according to the transformation. 

 The transformation z = f(Z) = Z+
Z

a2

, a real, is one of the simplest and most 

important transformation of  two dimensional motions. By means of this transformation we can 

map the Zplane on the zplane, and vice versa. Since f(Z) = 1  
2

2

Z

a
, the mapping is 

conformal except at Z =  a      ( F Chorlton, 1967). Then we will calculate the liquid 

properties. The flow from the circle to the plate will be changed without compromising the 

flow properties. The boundaries of the fluid in one plane, being streamlines, transform into the 

boundaries of the fluid in the other plane.  Sources, sinks, and vortices in one plane map into 

sources, sinks, and vortices of the same strength in the other plane under a conformal 

transformation. Since the two flow patterns are not the same, the velocities are not mapped one 

to one, but they are proportional to one another, depending on the mapping function. 

 

 

Flow Past a Flat Plate 

We now consider the image of the circle   Z= ae
i

, with  z = Z+
Z

a2

.  

Uniform flow past the flat plate, parallel to it is given by w = Uz. Therefore complex potential 

for corresponding flow past a cylinder is w = U( Z+
Z

a2

). 

Then we get the components   x + iy  = ae
i

 + 
i

2

ea

a

 

= 2 a cos   = 2X. 

O 

Fig-3 Flow past a vertical flat plate 
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Hence the circle is mapped to a straight line y = 0, 2a < x < 2a, with the exterior of the circle 

mapping to the exterior of the line section (2a, 2a).  

 

 

 

 

 

 

 

 

 

 

 

                        

Fig-4 Flow past a horizontal flat plate 

 

 We see that the first contour r = a corresponds to the streamline and second contour the flat 

plat length 4a is also streamline. The two flow patterns are symmetric. This symmetry appears 

when the flow direction is parallel with the axis of symmetry of the body. The stagnation 

points are coincided with the ends of each body. Since velocity is the same at the upper and 

lower surface, the pressure is the same. The nature of pressure distribution supports the 

complex symmetry observed in streamlines seen above while showing that upper and lower 

surface distributions cancel each other out. So that effect gives non lifting flow. The streamline 

contours of the transformation planes are the same. Thus we calculate difficult flow patterns.  

 

Flow Past an Oblique Plate 

 

 Consider a flat plate in the zplane , y = 0 and 2a < x < 2a  and  far from the plate, the 

flow is uniform magnitude U, at angle  to the xaxis. Therefore complex potential becomes w 

= U( Zei
+

Z

a2

e
i

), = 90. Then we get the following symmetric streamlines. The velocity, 

pressure are balance at the upper and lower sides. It has no lift. 

 

 

 

 

 

 

 

 

 

 

Fig-5 Flow past a vertical flat plate 
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Writing z = Zei
+

Z

a2

e
i

, the line in the zplane is mapped to a circle in the Zplane. 

Also, as |z|  , z  Z, so the flow far from the body that is the same in the zplane and 

Zplanes. Consider flow angle  to a circle. 

  

 

 

 
 Zplane  zplane 

Fig-6 Flow past an oblique flat plate  

 

 We also get the above symmetric streamlines. The velocity, pressure are balance at the 

upper and lower sides. There is no lift. 

 

Flow Past an Oblique Plate with Circulation 
 

The same analysis can be repeated but now including circulation k about the body. The 

complex potential becomes   

w= U( Ze
i

+
Z

a2

e
i

) 
2

ki
logz . 

 

 

 

 

 

 

 

 

 

 

Fig-7 Flow past an oblique flat plate with circulation 

  

If we add this circulation to the flow, rare stagnation point falls into the trailing edge. In 

this way, we have no longer an infinite velocity on the trailing edge as it is illustrated.  If the 

circulation ||/4Ua is greater than that `1΄, the leading stagnation point moves to lower 

surface. 
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The streamline patterns do not have not the same velocity at the upper sides and the lower 

sides. Thus the pressures are not the same. It produces lift. 

    

RESULTS AND CONCLUSION 

In this paper we have analyzed and interpreted the fluid flows by using visualization 

technique. Building up a streamline, to interpret fluid flow is a difficult and also time-

consuming process. Solving the difficulties related to fluid flow with technical assistance is the 

main task of this paper.  First of  

all, consistency of the fluid flow with technical process (our software) used is examined 

and interpretation is then proceeded. To solve fluid flow problems with complex vector pattern 

is very difficult and time consuming. With technical assistance (i.e. with Matlab program) 

complex vector patterns were easily visualized. Resulted patterns were interpreted from 

different sides of view. Fluid dynamics is aimed at predicting the velocity and pressure fields 

in the flows past rigid bodies. Of particular interest are the velocity and pressure distributions 

on the body surface. External flows called flows past rigid bodies can also be easily visualized 

by technical assistance. Being integrated with the visualization of external flows, we can figure 

out whether it can create lift or not. On the other hand, the velocity and pressure form the 

figure that gives the aerodynamic force acting upon the body between the flow and the body. 
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