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Abstract 

 The purpose of this paper is to give an introduction to some of the theoretical ideas from 

Markov chain theory. We begin with a brief review of basic concepts and rates of convergence 

for Markov chain. An account of estimation from ergodic averages follows. 
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Markov Chain 

  A Markov chain X is a discrete time stochastic process {X0, X1, … } with the 

property that the distribution of Xt given all previous values of the process, X0, X1, … , Xt–1 

only depends upon Xt–1. Mathematically, we write 

   P{Xt  A  |  X0, X1 , … , Xt–1}  =  P{Xt  A  |  Xt–1} 

for any set A, where P{° | °} denotes a conditional probability. 

  Typically (but not always) for Markov chain, the Markov chain takes values in R
n
 (n-

dimensional Euclidean space). However, to illustrate the main ideas, for most of this paper, 

we shall restrict attention to discrete state-spaces. 

  Extension to general state-spaces are more technical, but do not require any major 

new concepts. Therefore, we consider transition probabilities of the form  

Pij(t) = P{Xt= j  |  X0= i}. 

  For the distribution of Xt to converge to a stationary distribution, the chain needs to 

satisfy three important properties. First, it has to be irreducible. That is, from all starting 

points, the Markov chain can reach any non-empty set with positive probability, in some 

number of iterations. This is essentially a probabilistic connectedness condition. Second, the 

chain needs to be aperiodic. This stops the Markov chain from oscillating between different 

sets of states in a regular periodic movement. Finally, and most importantly, the chain must 

be positive recurrent. This can be expressed in terms of the existence of a stationary 

distribution (°). There are also various equivalent definitions. These ideas are made precise 

in the following definition. 

  Let ii be 
i
the time of the first return to state i, (ii = min{t > 0  : Xt = i  | X0 = i}). 

Definition 

(i)  X is called irreducible if for all i, j, there exists a t > 0 such that Pij(t) > 0. 

(ii)  An irreducible chain X is recurrent of P{ii < } = 1 for some (and hence for all) i. 

Otherwise, X is transient. Another equivalent condition for recurrence is 

  
i

 Pij(t) =  for all i, j. 
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(iii)  An irreducible recurrent chain X is called positive recurrent if E[ii] <  for some (and 

hence for all) i. Otherwise, it is called null-recurrent. Another equivalent condition for 

positive recurrence is the existence of a stationary probability distribution for X, that is 

there exists (°) such that  

  
i

 (i) Pij(t) = (j).                 (1.1) 

  for all j and t  0. 

(iv)  An irreducible chain X is called aperiodic if for some (and hence for all) i, 

   greatest common divisor {t > 0 : Pii(t) > 0} = 1. 

 In Markov chain, we already have a target distribution (°), so that by (iii) above, X will 

be positive recurrent if we can demonstrate irreducibility. 

  In practice, output from Markov chain is summarized in terms of ergodic average of 

the form 

   f N = 1

1

N

N

i

 f(Xt) 

where f(°) is a real valued function. Therefore asymptotic properties of f N are very 

important. 

Theorem  If X is positive recurrent and aperiodic then its stationary distribution (°) is 

the unique probability distribution satisfying (1.1). We then sat that X is 

ergodic and the following consequences hold : 

 (i)  Pij(t)  (j) as t  for all i, j. 

 (ii)  If E[ |f(X)| ] < , then  P{ f N E[f(X)]} = 1, 

where  E[f(X)] = f(i) (i), the expectation of f(X) with respect to (°). 

  Part (ii) of this Theorem  is clearly very important in practice for Markov chain, 

although it does not offer any reassurance as to show how long we need to run the Markov 

chain before its iterations are distributed approximately according to (°), and it offers no 

estimate as to the size of the error of any estimate f N. 

  Most of the Markov chains produced in Markov chain Monte Carlo are reversible, are 

derived from reversible components, or have reversible versions. A Markov chain is said to 

be reversible if it is positive recurrent with stationary distribution (°), and  

   (i) Pij = (j) Pji.

  We shall assume that the Markov chains we consider are reversible unless otherwise 

stated.  
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Rate of Convergence 

  We say that X is geometrically ergodic (in total variation norm), if it is ergodic 

(positive recurrent and aperiodic) and there exists 0  < 1 and a function V(°) > 1 such that

   
j

 |Pij(t) – (j)|  V(i) 
t
                (1.2) 

for all i. The smallest for which there exists a function V satisfying (1.2) is called the rate 

of convergence. We shall denote this by 
*
. (Formally, we define 

*
 as inf{V such that 

(1.2) holds}.) 

  Sufficiently regular problems have transition probabilities described by a sequence of 

eigenvalues (0, 1, …}, where 0 = 1, and corresponding left eigenvalues {e0, e1,…}, that is 

   
i

 ek(i) Pij(t)  =  k ek(j) 

for all j and for each k, such that 

   Pij(t)  = 
k

 ek(i) ek(j) k
t
.                (1.3) 

  Here  e0(°) = (°). In general, the eigenvalues can be complex with modulus bounded 

by unity. Reversibility of the Markov chain ensures that the eigenvalues and eigenvectors are 

real. In general, for infinite state-spaces, there are an infinite number of eigenvalues. 

However, for geometrically ergodic chains, all but the principal eigenvalues, 0 = 1, are 

uniformly bounded away from ±1. Chains which fail to be geometrically ergodic have an 

infinite number of eigenvalues in any open interval containing wither –1 or 1.  

  For large t, the dominant term in (1.3) is (j) = e0(j). However, the speed at which 

convergence is achieved depends on the second largest eigenvalue in absolute value, which is 

just the rate of convergence of the Markov chain. 

  Therefore, an alternative definition of 
*
 is 

   
* 

=  |k|. 

  In practice, it is usually too difficult to obtain useful upper bounds on 
*
. 

 

Estimation 

  One of the most important consequences of geometric convergence is that it allows 

the existence of central limit theorems for ergodic averages, that is, results of the form 

   N ( f N – E[f(X)])  N(0,
2
)               (1.4) 

for some positive constant , as N , where the convergence is in distribution. Such 

results are essential in order to put inference from Markov chain output on a sound footing. 

Even when central limit theorems do exist, algorithms can often be extremely inefficient in 

case where is large in comparison with the variance (under ) of f(X). 

  An extensive treatment of geometric convergence and central limit theorems for 

Markov chains can be found in Meyn and Tweedie (1993), applications to Metropolis-

Hastings algorithms appear in Roberts and Tweedie (1994), and to the Gibbs sampler in Chan 
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(1993), Schervish and Carlin (1992) and Roberts and Polson (1994). Tierney (1995: this 

volume) discusses these results further, and Geyer (1992) provides a review of the use of 

central limit theorems for Markov chain. 

  We will assume that (1.4) holds for the function f(°). The following result gives 

equivalent expressions for 
2
.  

Theorem  
2
  =  Var[f(X0)]  +  2 

1i





 Cov(X0, X1)            (1 .5) 

     =   
1j






1

1

j

j







  ai Var[f(X0)] 

      
*

*

1

1








 

for some nonnegative constant ai, where X0 is distributed according to (°), and  

0i





 ai = 1.  

  The ratio 

   eff
f
 = 2

1


 Var[f(X0)] 

is measure of efficiency of the Markov chain for estimating E[f(X)]. 

  To assess the accuracy of our estimate of E[f(X)], f N, it is essential to be able to 

estimate 
2
. This problem is reviewed extensively in Geyer (1992). We content ourselves 

here with a short description of two of the simplest and most commonly used methods. 

 

Batch Means 

  Run the Markov chain for N = mn iterations, where n is assumed sufficiently large 

that 

   Yk =
1
n

( 1) 1

kn

i k n  

  f(Xi)                   (1.6) 

are approximately independently N(E[f(X)], 
2
).  

  Therefore 
2 

can be approximated by 

    1
n

m
1

m

k 

 (Yk – f N)
2
, 

or alternatively a t-test can be used to give bounds on the accuracy of f N. 
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Window Estimator 

  From (1.5), an obvious way to try to approximate 
2
 is to estimate 

   i    Cov[f(X0), f(Xi)] by the empirical covariance function 

   i  =  
1
n

1

N i

j





  [f(Xj) – f N] [f(Xj+1) – f N]              (1.7) 

  Unfortunately, this approach runs into trouble since the estimates become 

progressively worse as i increases (there are less and less terms in the average (1.7)). 

  In fact, the estimator produced by this approach is not even consistent. Instead, it is 

necessary to use a truncated window estimator of 
2
, 

   N
2
 = 0 + 2 

1i





 N(i) i,                  (1.8) 

where 0  N(i)  1. Typically, the N(i)  are chosen to be unity within a certain range 

(which can depend upon N), and zero outside this range. 
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