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Abstract 

Markov chain is widely applicable to the study of many real-world phenomene. We 

represent the probability vectors, stochastic matrices, Markov chains, higher transition 

probabilities, stationary distribution, and absorbing states in this paper. 
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Introduction 

  We come into contact with our first random process (stochastic process), known as a 

Markov chain, which is widely applicable to the study of many real-world phenomena. 

Applications to genetics and production processes are presented. 

 

Probability Vectors 

  A row vector u = (u1, u2, …, un) is called a probability vector if its components are 

non-negative and their sum is 1. 

  Consider the following vectors: 

   u = ( 3
4

, 0,  1
4

, 1
2

),  v = ( 3
4

, 1
2

, 0, 1
4

), and  w = ( 1
4

, 1
4

, 0, 1
2

). 

Then:  u is not a probability vector since its third component is negative; 

   v is not a probability vector since the sum of its components is greater than 1;  

   w is a probability vector. 

Remark: Since the sum of the components of a probability vector is one, an arbitrary 

probability vector with n components can be represented in terms of n-1 

unknowns as follows: 

    (x1, x2, … , xn-1, 1x1x2 … xn-1). 

   In particular, arbitrary probability vectors with 2 and 3 components can be 

represented, respectively, in the form 

    (x, 1x)  and   (x, y, 1xy). 

 

Stochastic and Regular Stochastic Matrices 

  A square matrix P = (pij) is called a stochastic matrix (Hus, 1997) if each of its rows 

is a probability vector, that is, if each entry of P is non-negative and the sum of the entries in 

every row is 1. 

Theorem 1 If A and B are stochastic matrices, then the product AB is a stochastic matrix. 

Therefore, in particular, all powers A
n
 are stochastic matrix. 
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Definition: A stochastic matrix P is said to be regular if all the entries of some power P
m

 

are positive. 

  The stochastic matrix A = 
1 1
2 2

0 1 
 
 
 

 is regular since 

        A
2
 = 

1 1
2 2

0 1 
 
 
 

 
1 1
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0 1 
 
 
 

 = 

1 1
2 2

31
4 4

 
 
 
 

 is positive in every entry. 

  Consider the stochastic matrix B = 
1 1
2 2

1 0 
 
 
 

.  

  Here  B
2
 = 

3 1
4 4

1 0 
 
 
 

,     B
3
 =

7 1
8 8

1 0 
 
 
 

,    B
4
 = 

15 1
16 16

1 0 
 
 
 

,  …  . 

  In fact every power B
m

 will have 1 and 0 in the first row, hence B is not regular.  

 

Fixed Points of Square Matrices 

  A non-zero row vector u = (u1, u2, … , un) is called a fixed points of a square matrix 

(Kandasamy et al., 2010). A if u is left fixed, that is, is not changed, when multiplied by A :  u 

A = u. 

  We do not include the zero vector 0 as a fixed point of a matrix since it is always left 

fixed by every matrix A:  0 A = 0.  

Theorem 2 If u is a fixed vector of a matrix A, then for any real number  0 the scalar 

multiple u is also a fixed vector of A. 

 

Fixed Points and Regular Stochastic Matrices 

  The main relationship between regular stochastic matrices and fixed points is 

contained in the following theorem. 

 

Theorem 3 Let P be a regular stochastic matrix. Then :  

 (i)  P has a unique fixed probability vector t, and the components of t are all positive; 

 (ii)  the sequence P, P
2
, P

3
, … of powers of P approaches the matrix T whose row are 

each the fixed point t; 

 (iii) if p is any probability vector, then the sequence of vectors pP, pP
2
, pP

3
, … 

approaches the fixed point t; 

 

Note: P
n 

approaches T means that each entry of P
n
 approaches the corresponding entry of T, 

and pP
n
 approaches t means that each component of pP

n
 approaches the 

corresponding component of t . 

 Stochastic matrix P is said to be regular if all the entries of some power P
m

 are positive. 
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Markov Chains 

  We now consider a sequence of trials whose outcomes, say, X1, X2,…, satisfy the 

following two properties : 

(i)  Each outcome belongs to a finite set of outcomes (a1, a2,…, am) called the state space of 

the system; if the outcomes on the n
th

 trial is ai, then we say that the system is in state ai 

at time n or at the n
th

 step. 

(ii)  The outcome of any trial depends at most upon the outcome of the immediately 

preceding trial and not upon any other previous outcomes; with each pair of states (ai, aj) 

there is given the probability pij that aj occurs immediately after ai occurs. 

  Such a stochastic process is called a (finite) Markov chain (Natarajan & Tamilarsi, 

2007). The numbers pij, called the transition probabilities, can be arranged in a matrix 

    P = 

11 12 1

21 22 2

1 1

m

m

m m mm

p p p

p p p

p p p

 
 

 
    
 

 

 

called the transition matrix. 

  Thus with each state ai there corresponds the i
th

 row (pi1, pi2, … , pim) of the transition 

matrix P; if the system is in state ai, then this row vector represents the probabilities of all the 

possible outcomes of the next trial and so it is a probability vector. 

 

Theorem 4 The transition matrix P of a Markov chain is a stochastic matrix. 

 

Higher Transition Probabilities

  The entry pij in the transition matrix P of a Markov chain is the probability that the 

system changes from the state ai to the state aj in one step:  ai  aj. 

  The entry pij
(n)

 in the transition matrix P
(n)

 of a Markov chain is the probability that 

the system changes from the state ai to the state aj in exactly n steps :  ai  ak  al   …   aj. 

   

Theorem 5 Let P be the transition matrix of a Markov chain process. Then the n-step 

transition matrix is equal to the n
th

 power of P :  P
(n) 

= P
n
. 

  Now suppose that, at some arbitrary time, the probability that the system is in state ai 

is pi; we denote these probabilities by the probability vector we denote these probabilities by 

the probability vector p = (p1, p2, … , pm) which is called the probability distribution of the 

system at that time. In particular, we shall let 

   p
0
 = (p1

0
, p2

0
, … , pm

0
) 

denote the initial probability distribution, that is, the distribution when the process begins, 

and we shall let 

   p
n
 = (p1

n
, p2

n
, … , pm

n
) 

denote the n
th

 step probability distribution, that is, the distribution after the first n steps. 
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Theorem 6 Let P be the transition matrix of a Markov chain process. If p = (pi) is the 

probability distribution of the system at some arbitrary time, then pP is the 

probability distribution of the system one step later and pP
n
 is the probability 

distribution of the system n steps later. In particular, 

     p
1
 = p

0
P,  p

2
 = p

1
P,  p

3
 = p

2
P,  …  ,  p

n
 = p

0
P

n
. 

 

Stationary Distribution of Regular Markov Chains 

  Suppose that a Markov chain is regular, that is, that its transition matrix P is regular. 

By Theorem 3, the sequence of n-step transition matrices P
n
 approaches the matrix T whose 

rows are each the unique fixed probability vector t of P; hence the probability pij
n
 that aj 

occurs for sufficiently large n is independent of the original state ai and it approaches the 

component tj of t.  

Theorem 7 Let the transition matrix P of a Markov chain be regular. Then, in the long run, 

the probability that any state aj occurs is approximately equal to the 

component tj of the unique fixed probability vector t of P. 

  Thus we see that the effect of the initial state or the initial probability distribution of 

the process wears off as the number of steps of the process increase. Furthermore, every 

sequence of probability distribution approaches the fixed probability vector t of P, called the 

stationary distribution of the Markov chain. 

 

Absorbing States 

  A state ai of a Markov chain is called absorbing if the system remains in the state ai 

once it enters there. Thus a state ai is absorbing if and only if the i
th

 row of the transition 

matrix P has a 1 on the main diagonal and zeros everywhere else. 

  Suppose the following matrix is the transition matrix of a Markov chain: 

   P = 

1 2 3 4 5

1 1 1 1
4 4 4 41

2

1 1 13
2 4 4

4

5

0

0 1 0 0 0

0 0

0 1 0 0 0

0 0 0 0 1

a a a a a

a

a

a

a

a

 
 
 
 
 
 
 
 
 

. 

  The states a2 and a5 are each absorbing, since each of the second and fifth rows has a 

1 on the main diagonal. 
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