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Abstract 
We presented the basic methods are carried to numerical examples with detailed steps of 
solution. Some theorems and corollaries' for converting the continued fraction to a simple 
fraction and vice versa are presented. 
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The Continued Fraction 

Definition 1.1 

  An expression of the form 
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is called a continued fraction (Demidovich & Maron, 1970; Sastry, 1999).  

  The following abbreviated notation is also used for the continued fraction (1.1) 
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  In the general case, the elements of a continued fraction a0, ak, bk, (k = 1, 2, … ) are 
real or complex numbers, or functions of one or more variables. 

  The fractions  a0 = 1
0a

, 
k

k
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,  (k = 1, 2, … )  are called components of the continued 
fraction; (the zeroth, first, second, etc.), and the numbers of functions ak and bk, (k ≥ 1) are 

called the terms of the kth component (partial denominators or numerators). We will assume 
that ak ≠ 0. 

  If the continued fraction (1.1) contains a finite number of components n, not counting 
the zeroth one, it is called a finite or n-component continued fraction and is symbolized 
compactly as 
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  A finite continued fraction is identified with the corresponding common fraction 
obtained by performing the indicated operations. A continued fraction (1.1) having infinity of 
components is termed an infinite continued fraction and is defined as 
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  The continued fraction 
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where all partial numerators are equal to 1 is termed a simple (standard) continued fraction. 
The denominators of the components are called partial quotients. Note that in the theory of 
numbers, partial quotients are usually natural numbers (positive integers). 

 

Converting a Continued Fraction to a Simple Fraction 1.2 

  Any finite continued fraction may be converted to a simple fraction. To do this, 
simply perform all the operations indicated by the continued fraction. 

 

Converting a Simple Fraction to a Continued Fraction 1.3 

  Any positive rational number may be converted to a continued fraction with natural 

elements. Suppose we are given the fraction q
p

. 

  Eliminating the integral part a0, we have 

   q
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, 

where  r0 is the remainder. If   is a proper fraction then a0 = 0 and r0 = p. 

  Dividing the numerator and denominator of the fraction q
r0

 by r0, we have 
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where a1 is an integral quotient and r1 is the remainder left from dividing q by r0. 

  Dividing the numerator and denominator of the fraction 0
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 by r1, we obtain 
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where a2 is an integral quotient and r2 is the remainder left from dividing r0 by r1. 

  The process may be continued in similar fashion. 
  Since   q > r0 > r1 > r2 > …  and  ri, (i = 0, 1, 2, … ) are positive integers, we will 

finally have rn = 0,  or   2
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  Substituting the expressions of the fractions 1−i
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Convergents 1.4 

  Suppose we have a terminating or nonterminating continued fraction 
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  The simple fraction 
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 ],  k = 1, 2, 3, …,  where  k ≤ n, is called the 

kth convergent of the continued fraction (1.5). 

  We usually set 
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and for definiteness we assume that 
   P0 = a0,   Q0 = 1,  

and   P–1 = 1,   Q–1 = 0.                (1.6) 
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  Then 
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Theorem 1.5 
  The numbers Pk, Qk,  (k = –1, 0, 1, 2, … ), determined from the relations 

   Pk =  ak Pk–1 +  bk Pk–2              (1.7) 

   Qk =  ak Qk–1 +  bk Qk–2              (1.8) 

where 
   P–1 = 1,  Q–1 = 0,  P0 = a0,  Q0 = 1            (1.9) 

are, respectively, the numerators and denominators of the convergent k
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 of the  
continued fraction. We shall call such convergent canonical. 
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Proof :   Let   Rk, (k = 1, 2, … )  be the successive convergent of the continued fraction 
(1.5). 

  It is required to prove that 
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,  (k = 1, 2, … ). 

  We carry out the proof by method of mathematical induction. 
  When  k = 1, we have, for the convergent R1, 
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  On the other hand, from relations (1.7) and (1.8), we get, taking into consideration 
(1.9), 
   P1 = a1 a0  + b1 , 

   Q1 = a1 (1)  + b1 (0) = a1. 
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  and for k = 1 the assertion of the theorem holds. 

  Now let the theorem be true for all natural numbers not exceeding k. We will show 
that the theorem also holds true for the natural number (k+1). 

  From (1.7) and (1.8) we obtain 
   Pk+1 =  ak+1 Pk +  bk+1 Pk–1,            (1.10) 

   Qk+1 =  ak+1 Qk +  bk+1 Qk–1. 

  By the induction hypothesis we have 
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  By the law of formation of continued fraction (1.5), the convergent Rk+1 is  
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which completes the proof. 
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Note 1.6 

  Since the terms of the convergent are not defined uniquely, in the general case, assert 
that the numerators and denominators of convergent of noncanonical type satisfy the 
equations (1.7) and (1.8). 

Corollary 1.7 

   For the simple continued fraction 
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the numerators and denominators of its convergent k

k
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p

 (k =1, 2, …) can be determined from 
the relations 
   pk = ak pk–1 + pk–2 , 

   qk = ak qk–1 + qk–2 ,              (1.11) 

where we put   p0 = a0,  p–1 = 1,   and   q0 = 1,  q–1 = 0. 

Note 1.8 

  The following scheme is convergent for finding the terms of successive  
convergent from formulas (1.7) and (1.8). 

   k –1 0 1 2 3 … 
   bk - 1 b1 b2 b3 … 

   ak - a0 a1 a2 a3 … 

   Pk 1 a0 P1 P2 P3 … 

   Qk 0 1 Q1 Q2 Q3 … 

  In this scheme, the row bk is omitted for a continued fraction where bk = 1  

(k = 1, 2, … ) and the formulas (1.11) hold. 

Theorem 1.9 

  The formula 
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holds true for two successive convergent 1
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Proof :  We have 
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  Using relations (1.7) and (1.8), we get 
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  From this we successively obtain 
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and, consequently, on the basis of formula (1.13) we conclude that 
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Corollary 1.10 
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fraction, then 
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Corollary 1.11 

  For two successive convergent   1
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 (k ≥ 1) of a simple continued fraction, 
the following equation holds true: 
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Theorem 1.12 

  For two successive convergent of equal parity 2
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Proof :  We have  k
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whence, on the basis of the law of formation of convergents and on the basis of  
elementary properties of determinants, we obtain 
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where Δk is the determinant considered in Theorem 1.9. 

  By the corollary 1.7 to theorem 1.5, we have 

   Δk–1 = (– 1)k  b1
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whence Dk
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  Consequently we obtain formulas (1.15) by using relation (1.16). 

 

Corollary 1.13 
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Theorem 1.14 

  If all the elements of a finite continued fraction are positive, then its convergent of 
even order form a monotonic increasing sequence and the convergent of odd order form a 
monotonic decreasing sequence. Each convergent of even order is less than any convergent of 
odd order. The number α itself, which is expressed by the continued fraction, lies between 
two successive convergents. 

Proof :  Suppose we have the continued fraction 
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with positive elements ak and bk and suppose k

k
q
p

 (k = 0, 1, 2, … , n) are its successive 
canonical convergents.  
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  Then obviously  Pk > 0  and  Qk > 0. 

  We consider two cases: 

(I)  Let  k = 2m be an even number. 
Then from (1.15), taking into consideration that ak > 0 and bi> 0, (i = 1, 2, …, k),  
we have 
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(II)  Let  k = 2m+1 be odd number. 

  Then  (k–1) will be even, and from the same relation (1.15) we get 
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  We have thus proved that even convergent form a monotonic increasing sequence and 
odd convergent form a monotonic decreasing sequence. 

  Furthermore, if in (1.17), we set k = 2m, we get 
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which is to say that any convergent of odd order is greater than the adjacent convergent of 
even order. 

  We conclude theorefrom that any convergent of odd order is greater than any  
convergent of even order. 
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but if  s > m, then 
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  Finally, from the law of formation of a continued fraction 
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  For the last convergent, we will clearly have an equality on the right in place of the 
strict inequalities (1.23) and (1.24). 
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