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Averaged Description of Waves in the Korteweg-De
Vries-Burger Equation
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Abstract

A perturbed Korteweg-de Vries equation is considered. We appeal to the multi-scale method of
Luke (1966) and Ablowtiz & Benny (1970) in which the solution u (x ,t) is assumed to be a
function of a fast variable 0 and the slow time and space variables T, X and is periodic in 6 and
can be expressed as a formal power series in powers of € , a small positive parameter. We obtain
a nonlinear nonhomogeneous system of first order partial differential equations for the
parameters of the wave train, such as the amplitude, the average depth, and the wave number.
Although the perturbation term can in general be left arbitrary, we deal specifically with the
frictional term representing KdV-Burgers damping. The initial condition is a step discontinuity
which evolves into a disturbance resembling an undular bore. Using the modulation theory we
have developed, we find that at the region just behind the leading-front, the amplitude, the phase
speed and the average depth of the waves increases; but at the region just ahead of the trailing-
edge, the amplitude of the waves decays as the reciprocal of the slow time.
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Introduction

The problem of modulated nonlinear periodic waves is described by the perturbed
Korteweg — de Vries equation,

u +uu, +u,_ +eV(u) = 0, (1)

where V (u) is an arbitrary functional of u (x,t) , € is a small positive number measuring
the strength of the frictional term V (u) and subscripts denote partial differentiations.
Equation of the form (1) occurs in many circumstances.

WhenV (u) = — 7 u,, , 7> 0so that (1) is the Korteweg-de Vries -Burgers equation

(Karpman, 1975). To study undular bores which are defined here in general sense as the
solution of the perturbed Korteweg-de Vries equation (1), with the initial condition being the
step discontinuity

u(x,0) = h,, when x < 0
0, when x > 0 (2)

where h, is a positive constant and for the case of the specific frictional term

V(u)= — Y Uxx -

Fast and Slow Variables

Following Luke (1966), Ablowitz & Benny (1970), Whitham (1974), we introduced
the fast variable 0 and the slow space and time variables X and T by

0= c1OXT), X =¢gx, T=c¢t, (3)
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so that u = u (0, X, T). This is analogous to the procedure used by Kuzmak (1959) for
nonlinear oscillations described by ordinary differential equations. The local wave number k
(X, T), frequency o (X, T) and phase speed U are defined by

k=0, =0y ,o=-0=-0p ,c=U=2, (4)
K

from which we get the consistency condition , (which is known as the conservation of
waves)

KT +(DX =0. (5)

Asymptotic Expansion

We shall use the perturbation scheme developed for slowly varying solitary waves by
Grimshaw (1970), Johnson (1973) and Ko & Kuehl (1978). We seek an asymptotic solution
u (6, X, T) of the form

u(6,X,T) = uy0,X,T) + euy(0,X,T) + 82112(9,X,T)+"' . (6)

Then, we have V (u) = V(uy) +Vu(u0){£u1+82u2 +}+ By using asymptotic
expansion (6), relations (4) and (5) , inthe perturbed KdV equation (1) we get

—0ug +eug +u(kug +euy) + (K3u999 +381<2u96X + 3eKK x Ugg +3821<u6XX +

382KXL19X +82KXXue +83uXXX) +&e(V(ug)+V, (uo){aul +82u2 +-~}+--- =0

(7)
Leading — Order Expansion

From the expressions (6) , ( 7) , and for the leading — order , we have third order
nonlinear differential equation for u, |,

3
—OUpg Tt KUgUpgg + K Ugggg = O, (8)
which can be treated as an ordinary differential equation with independent variable 6.

Periodic Solution
From equation (8), we can rewrite

—Uugg +uqugp + K uggeg = O, )
and following Korteweg — de Vries (1895), we assume the solution of the form

uy = a (b+cn’(BO)) +d, (10)
where the modular cosine function cn (y,s”)is a Jacobi elliptic function of modulus s.
Equations (9) and (10) give the relations

U—d+4c’p?

_ 10 28252 —
a= 1277 b+(23)

; (1)
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and then the periodic solution (10) reduces to the form

ug = —dn?O) + U - = (2-5%) , (12)
52 3s?

where the modular amplitude function dn (y,s”) is a Jacobi elliptic function of modulus s,
(see Abramowitz & Stegun, 1965) .The periodic of u is 2P, K(s*) is the complete elliptic
integral of the first kind and a/2 determines the amplitude of the oscillations:

a= uOmax _u0min . (13)

In particular, when the phase 0 =k X — o T, by using (11),the periodic solution u,
becomes

P
2
uy = %dn2 ( azj (X-UT),s* |+ U - %(2_32)- (14)
12s 3s

By integrating (9) with respect to the fast variable 6 once and twice respectively, we get

1
—Uu,+=u’o+K’uy —-B =0, (15)

—Uu’o +%u3o +Kk%(ugy)’ —2Bu, —2A =0, (16)

where the constants of integration A(X, T) and B(X, T) are given by the relations

A = %{—%(abmf+U(ab+d)2—4aB2K2(ab+d)(1—Sz)} : (17)

B = %(ab+d)2 —U(ab+d) +2ap’k*(1-5s7) . (18)

Polynomial and Some Relations

Again, we write equation (16) in the form

3
k2um = 2A +2Bu, + Uu’ —uT° . (19)
Letp, g, r; (r < q<p), be the real zeros of the polynomial on the right hand side of (19).
Then we have the relation q < uy< p and the periodic solution u, takes the form

up = q+(p-q)en’ | [0, (20)
12x
with the relations

1 1 1
Angqr , B = —g(pq+qr+rp) , U =§(p+q+r), (21)



Hinthada University Research Journal, Vol. 3, No. 1, 2011 19

ab+d=q, a=p-q. a=12kP%s’, r=U - — (2-s7), (22)
3s
a p—q 2 a P—9q
B:J :J 82 - - , 23)
12s?k?  V12s%k? 12%>  12B%?
a E(s7) 1o ol
S tr =1, == [ugde, [Zu’ d0 =2P(Ud+B), (24)
s” K(s%) 2P “p 52
1 3
j[§u30—5(u09)2]de = 2P {U(Ud+B)- A}, (25)
-P

where E(s”) is the complete elliptic integral of the second kind.

First Order Expansion

From the expanded equation (7), if we equate coefficients of & to zero, we get the
third order linear differential equation for:

—oup + Kugup)g + K ugy = f, (26)
where the expression f; is given by
fi = = uor — ugugx —3 K ugpgx —3 K Kxugge — V (ug ). 27)
Periodicity Conditions

In order for u; to be periodic in 0 with periodic 2P, we should have the conditions

P P
[f1do =0, Juof, do =0, (28)
-P -P

and by using f; from (27), the first condition in (28) simplifies to the condition
o (" o (1 f
— |u,do + —| [=u%do = — |V(uy) do, 29
lfnsn) + K fzam) - - v *
and by using from (27), the second condition in (28) simplifies to the condition
P P P
i{jluzode} + i[j{lu%%]cz(uoe)z}de} = — JugV(up) do.  (30)

oT| 7,2 ox| 43 ;A
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By using the conditions (24), the periodicity condition (29) becomes
6 0 1t
—(@d) + —((Ud+B) = — — |V(uy) do, 31
(@ —(Ud+B) 2P_jp(o) (31)
and by using the conditions (24) (25), the periodicity condition (30) becomes

8 8 P
—(Ud+B) &({U(UMB)—A}): _E_Ip uyV(u,) do. (32)

Function W and Related Relations

In order to put the consistency condition (5) and the periodicity conditions (31), (32)
in a more symmetric form, we introduced the function W(A, B, U) by the relation

K 1
W:E §uoedu0 = > §\/2A+2BUO +Uu?—u0/3 dug. (33)

Here, the symbol iﬁ denotes integration over a complete cycle of oscillation. We also noticed

that in the definition (33), the function u, plays the role of a dummy variable . Also we can
easily obtain the relations

k=W's, d= W'aW,, Ud+B = W'aW,. (34)

Since p, q, r are the zeros of \/2A +2Bu, + Uu’o — u3o/3 , we can express W(p ,q ,)
in the form

11 R
W= — — —uy)(uy—q)(uy —r) duy. 35
TINE {x/(P 0)(ug —q)(uy —r1) dug (35)
Following Byrd & Friedman (1971), we also can express the functions W, W, and W, in

terms of the two complete elliptic integrals of the first and second kind K(s2 ), E(sz) by the
relations

5/2
) % 158ﬁ (12) (=5 +sHEGE") ~(1-s")1-s*/DKGE®) J. - (36)
S

1/2 1/2
1252 ’ ) ’
W, = %( : J K(s?). Wy = %(12; ] K(s ){Hsizzzz))}. 37)
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Modulation Equations for the Perturbed KdV Equation

By using the relations (34), the consistency condition (5), the periodicity conditions
(31) and (32) reduce to the modulation equations in the more symmetric form:

W,y Vs —wAa—U = 0, (38)
oT oX oX

P
W, ; Ws +WA6—B - Y, [V, do, (39)
oT oxX oX 2P 2

P
Wy, y Wy ~W, A _ W, quV(uO) de. (40)
oT oX "t oX I

These three modulation equations (38) ,( 39) and (40) were indeed obtained by
Whitham [13] for the case when V(u) = 0. To simplify equations (38) ,( 39) and (40) , we

noticed that W =W (p ,q,r) and we evaluate W, , Wg, Wy interms of W , W , W to
get the relations

W W
W, = -6 P a (41)
{(p q)(r—p) (p- q)(q—r) (q- r)(r }
W, = 6 { W,  ,aW, } )
(P—-(-p) (p—q)(q—r) r)(r
W, = -3 p°W, q W r’W, . (43)
(P-(r- p) P-d(q- r) (@-1)(r—p)

By using the relations (41) , (42) and (43) in equations (38) , and after simplifying and
arranging terms (nontrival) , we get the equation

(p+q)T+%{(p+q+r)—

p(W, = W) +q(W, =W )+ (W, - W)
(p+dx
(W, -W,))

Pp-q9 W
6(W, W){ _jv(°)d

0 )de} , (44)

the equation

e, +H(ﬁqm_p(wq—Wr>+chr—Wp>+r<Wp—Wo}(qﬂ)x

(W, =W,)
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_ _(@-n  |pW, ¢ W,
6(Wq—Wr){ P J;V(uo)de b IuOV(uO)dO}, (45)

-P

and the equation

W -W W - W )+1(W —W
(r+p)T+H(p+q+r)—p( - r)+<ziNrr_pr))+r( - q)}(rﬂo)x
(r—p) qW, [ W, [
6(Wr_Wp){ s _jPV(uO)de— S _J;uOV(uO)dG}. (46)

Modulation Equations in Characteristic Form

Following Whitham (1974), we introduced the variables r, , », and 7, through the
relations

,=q+r, r,=r+p, r,=p+q, (47)

so that the equations (44), ( 45), (46), can be put into a nonlinear nonhomogeneous system of
first — order partial differential equations

or or
6_,11_,+Q1(r19r2’r3)a_;( = Ml(rl’rZ’rS)’ (48)
or or
8_12“+Q2(r1’r2’r3)a_;( = M,(r,1,,15), (49)
or or
8_"13"+Q3(r“r2’r3)8_)3( = M,(,1,,15), (50)

where the characteristic velocities Q,,Q,,Q;, are given by the expressions

K(s?)

1 _a

Ql - 6(1‘1+I‘2+r3) 3{K(Sz)—E(Sz)}’ (51)
1 Ca (18K

QZ 6(rl +r2 +r3) 3 {E(Sz)—(l—sz)K(sz)} > (52)
_ 1 a (1-s”)K(s’)

Q, 6(r1+r2+r3) + 3 SRR , (53)

and the nonhomogeneous terms M,,M,, M, are given by the expressions
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_ 1y s?K(s?) )

e A T I (u = V(uy)du, (54)
-1 0 _ s°K(s) l B _

M, = P_jPV(uo)duo B - (-KE) Pjp OV(u)du,, (55
_ _lp B s*K(s?) lP B

M3 - P_J;V(uo)duo aE(s_z) P_J;(uo d)V(uO)duo- (56)

Modulation Equations for the KdV-BURGERS Equation

For the case V (u) = — vy u,, , (y > 0), the case of Korteweg-de Vries-Burgers
equation

u, +uu, +u,_ -y u, = 0, (57)

we simplify the nonhomogeneous terms M,,M,,M, , given by (54), (55), (56) to
get the expressions

Ay {(1-s? +sHEY) - (1-s2)(1-57 /K (s?))

M= s K(s?) - EGs")f ’ Y

M, = 4 {(l—sz+s‘*>E(s2>—(1—s2)<1—sz/2>K<52>}, (59)
455" B —(1-5)K(E)]

M, = e (1= + 5B - (1-8)(1 =57/ 2K} (60)

45s* E(s?)
Initial Conditions for the Modulation Equations

We introduced the initial step discontinuity, (initial condition for u (x .t) at t = 0):
u(x,0) = h,, when x < 0

0, when x > 0 (61)

where h, is a positive constant . Following Gurevich & Pitaevskii (1973), we can deduce
the initial conditions for the modulation equations (48), ( 49), (50) at
T=0:

n=r, =0, r= 2h,, for X< 0,

, =0, rn=r= 2h,, for X > 0. (62)
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For the case V (u) = — v u,,, with the initial condition being the step discontinuity

(61), we shall use the modulation theory developed , with the initial conditions (62) , to
study the behavior of waves at those regions just behind the leading front and ahead of the
trailing edge .

Solution for the Leading Front
At the leading front where s° —1, r, = r;, q= t, by using the initial condition (61)

n

_1 I PN PO S )
d 6(r1+r2+r3) 3(r3 rl)(Z S 3K(sz)]’ (63)

the result which is obtained from (21), (22), (23) , we get
, =0, r,=r,= P, a= P(T), (64)

where we assumed that the solution in this region is a function of T alone . Then we
have from (51), (52), (53), (58), (59), (60), and by noticing E(s*) -1,
K(s?) = + oo, (1-s>)K(s*) = 0,K(s*)/{K(s*) = E(s*)} > 1 as s> > 1, we have

1 1
Q ~0, Q,~ EP(T)’ Q; ~ EP(T)’
4y » 4y
and M, ~0, M, ~ ——P° (1), M.~——P“(T) ,
1 L~ P M= iR

and the system (48), (49), (50) , reduced to a single equation

6_P + lpﬁ_P:_ﬂPZ(T),
oT 3 X 45

and hence we obtained that p = (c+4Ty/45)". But, wheny=0,(T=0),and

when s? — 1, we had seen that r, = 2 h, ,(see Gurevich & Pitaevskii, 1973) ,s0
that ¢ = 1/2h, , with the result P= 2h (1+8h,Ty/45)" and the relations
2h 8h,Ty )" 2h 8h,Ty )"
~0, ~ =21+ , ~ 21+ ,
Q Q:~ 7 ( 45 j R 3 ( 45

and the relations

’ 8h, Ty~ ’ 8h, Ty~
M, ~0, M,~ —161;5"7(“ 4°Syj .M, ~ —161;507[1+ 405Yj .
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Then, at the leading front , we found that

8h,Ty) "
L =0, = r3=2h0(1+ :syj : (65)

if the solution in this region is a function of T alone . The characteristic at the leading

-1
front is given by the differential equation dX/dT = Q, = 220 (1 + ShA‘O;FYj or by

the curve

X = D14 80TV (66)
4y 45

The characteristic (66) becomes X — (2h, /3)T , the result for the case when

h,T
V()= 0,butas T—> +oo, X —(15/4y) 1n(1+8:—57].

Solution for the Trailing Edge

25

At the trailing edge wheres® —0, r, = r,, a—0, p = g, by using the initial

condition (61) in (63), we get

r,= 2h,, 1 =r, = h,+1(]), (67)
where we assumed that the solution in this region is a function of T alone .
Then we have from (51), (52), (53), (58), (59), (60), we get
Q, ~v, Q,~y,Q; ~ h, and M, ~0, M,~0, M,~ 0,
and the system (48), (49), (50), reduced to a single equation

oT oX

and hence y = constant . But, when y=0, (T =0 ) and when s> — 0, we had seen that

= r, = 0, (see Gurevich & Pitaevskii, 1973) , so that y = constant = — h, and we are left

with the relations
Q ~-h,, Q,~-—h, ,Q; ~ h,, and M, ~0, M,~0, M, ~ 0.
Then, at the trailing edge , we found that

r =r =0, r, = 2hg, (68)
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if the solution in this region is a function of T alone . The characteristic at the trailing edge is
given by the differential equation dX/dT = Q, = — h, or by the straight line

X = —h,T. (69)

The characteristic (69 ) becomes X — — h T, the result for the case when
V@=0,butas T—> +oo, X—> —w0.

Conclusion

By using the asymptotic expansion, the consistency condition and the periodicity
conditions, the modulation equations are obtained in the more symmetric form and
characteristic form.

Using the modulation theory, we find that the behavior of waves is the curve

8h,T

X = 4—ln(1 +4L57j at the leading-front and is the strongest line X = — h,T at the
Y

trailing edge.
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