
Hinthada University Research Journal, Vol. 3, No. 1, 2011 

Assistant Lecturer, Dr., Department of Mathematics, Hinthada University 
 

Averaged Description of Waves in the Korteweg-De 
Vries-Burger Equation 

 
May Thida Htun 

 
Abstract 

        A perturbed Korteweg-de Vries equation is considered. We appeal to the multi-scale method of 
Luke (1966) and Ablowtiz & Benny (1970) in which the solution u (x ,t) is assumed to be a 
function of a fast variable θ and the slow time and space variables T, X and is periodic in θ and 
can be expressed as a formal power series in powers of ε , a small positive parameter. We obtain 
a nonlinear nonhomogeneous system of first order partial differential equations for the 
parameters of the wave train, such as the amplitude, the average depth, and the wave number. 
Although the perturbation term can in general be left arbitrary, we deal specifically with the 
frictional term representing KdV-Burgers damping. The initial condition is a step discontinuity 
which evolves into a disturbance resembling an undular bore. Using the modulation theory we 
have developed, we find that at the region just behind the leading-front, the amplitude, the phase 
speed and the average depth of the waves increases; but at the region just ahead of the trailing-
edge, the amplitude of the waves decays as the reciprocal of the slow time.   

       Key words:   consistency condition, frequency, period, phase, wave number  

 

Introduction 
          The problem of modulated nonlinear periodic waves is described by the perturbed  
Korteweg – de Vries equation,  
 
                                        εV(u)uuuu xxxxt +++     =    0,                                     (1) 
 
where V (u) is an arbitrary functional of u ( x , t )  ,   ε  is a small positive number measuring 
the strength of the frictional term V (u) and subscripts denote partial differentiations. 
Equation of the form (1) occurs in many circumstances. 

         WhenV (u) =  − γ xxu  ,  γ > 0 so that (1) is the Korteweg-de Vries -Burgers equation 
(Karpman, 1975). To study undular bores which are defined here in general sense as the 
solution of the perturbed Korteweg-de Vries equation (1), with the initial condition being the 
step discontinuity   
                                
                                u ( x , 0 )  =       0h ,        when    x  <    0    
                                                          0   ,        when    x   >   0                                (2)  
 
where  0h   is a positive constant and for the case of the specific frictional term  
V (u) =  − γ xxu  .  
 

Fast and Slow Variables 
   Following Luke (1966), Ablowitz & Benny (1970), Whitham (1974), we introduced 
the fast variable θ and the slow space and time variables X and T by  
               θ  =   1-ε  Θ (X, T) ,          X  =  ε x  ,             T  =  ε t  ,                               (3)  
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so that  u =  u (θ, X, T). This is analogous to the procedure used by Kuzmak (1959) for 
nonlinear oscillations described by ordinary differential equations.  The local wave number κ 
(X, T), frequency  ω (X, T) and phase speed U are defined by   

      κ = xθ   =  XΘ        ,   ω  =  −  tθ  =  − TΘ       ,   c = U =  
κ
ω  ,                           (4) 

from which we get the consistency condition , (which is known as the conservation of  
waves)   
                                          XT ωκ +  = 0.                                                                     (5) 
 

Asymptotic Expansion 
 
           We shall use the perturbation scheme developed for slowly varying solitary waves by 
Grimshaw (1970), Johnson (1973) and Ko & Kuehl (1978).  We seek an asymptotic solution 
u (θ , X, T) of the form  
 
   u ( θ , X , T )   =  )T,X,θ(u0  +  )T,X,θ(εu1  +  L+)T,X,θ(uε 2

2   .                    (6) 
 
Then, we have V (u) = V )u( 0  + { } LL +++ 2

2
10u uεεu)u(V . By using asymptotic 

expansion  (6),   relations  (4)  and  (5)  ,  in the perturbed   KdV equation  (1) we get   
)εuκu(uεuu XT +++ω− θθ   +  ++++ θθθθθ XX

2
XX

2
θθθ

3 κuε3uεκκ3uεκ3uκ(  

)uεuκεuκε3 XXX
3

XX
2

XX
2 ++ θθ  + ε { } LL ++++ 2

2
10u0 uεεu)u(V)u(V( . =  0          

                                                                                                                                     (7) 
Leading – Order Expansion 

             
         From the expressions (6) , ( 7) , and for the leading – order , we have third  order 
nonlinear differential equation for  0u   , 
                               θθθθθ ++ω− 0

3
000 uκuκuu   =    0,                                             (8)  

 
which can be treated as an ordinary differential equation with independent variable θ. 
 
Periodic Solution    
From equation (8), we can rewrite  
 
                                    θθθθθ ++− 0

2
000 uκuuUu   =    0,                                         (9) 

 
 and following Korteweg – de Vries  (1895) , we assume the solution of the form  
 
                                      0u  =  a ))(cnb( 2 βθ+  + d ,                                                 (10) 
where the modular cosine function cn ),y( 2s is a Jacobi elliptic function of modulus s. 
Equations (9) and (10)  give the relations   
                                     

                                   a =  12 222 sβκ  = 
)32(b
β4κdU 22

+
+−  ,                                        (11) 
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and then the periodic solution (10) reduces to the form 
                             

                            0u  =  )(dn
s
a 2
2 βθ  +  U  −  )s2(

s3
a 2

2 −   ,                                   (12) 

 
where the modular amplitude function dn ),y( 2s  is a Jacobi elliptic function of modulus s, 
(see Abramowitz & Stegun, 1965) .The periodic of  0u  is 2P , )K(s2  is the complete elliptic 
integral of the first kind and 2a  determines the amplitude of the oscillations:  
                                                  
                                                  a = min0max0 uu −  .                                                    (13) 
 
In particular, when the phase  θ  = κ X − ω T, by using (11),the periodic solution   0u   
becomes  
 

                  0u  =  
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛ 22
1

2
2

2 s),UTX(
s12
adn

s
a  +  U  −  )s2(

s3
a 2

2 − .              (14)  

 
By integrating (9) with respect to the fast variable θ once and twice respectively, we get   

                              Buκu
2
1Uu 0θθ

2
0

2
0 −++−   =  0 ,                                              (15) 

                         2A2Bu)(uκu
3
1Uu 0

2
0θ

2
0

3
0

2 −−++−    =  0  ,                             (16) 

 
where the constants of integration  A(X, T) and B(X , T) are given by the relations   
 

              A   =   
⎭
⎬
⎫

⎩
⎨
⎧ −+−+++− )sd)(1(abκ4aβd)U(abd)(ab

3
2

2
1 22223   ,             (17)  

                     B  =  )s(1κ2aβd)U(abd)(ab
2
1 2222 −++−+  .                                  (18) 

 
Polynomial and Some Relations  
 
               Again, we write equation (16) in the form  
 

                          0θ
22uκ  =  

3
uUu2Bu2A 0

3

0
2

0 −++  .                                             (19) 

Let p, q, r ; (r <  q < p), be the real zeros of the polynomial on the right hand side of  (19). 
Then we have the relation  q < 0u <  p and the periodic solution 0u  takes the form   

                               0u   =  q + ( p – q ) 2cn  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ − θ
12κ

rp
2  ,                                        (20) 

with the relations 

               A = pqr
6
1  ,  B  =  )rpqrpq(

6
1

++−    ,   U  = )rqp(
3
1

++ ,                    (21) 
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a b + d = q ,    a = p – q ,      a = 12 222 sβκ ,   r  =  U   − 2s3
a   ( 2 - 2s  ),               (22)             

              

             β  =  22s12
a
κ

 = 22s12
qp
κ

−  ,     2s   =  2212
a
κβ

 =  2212
qp
κβ

− ,                  (23) 

 

d =
)K(s
)E(s

s
a

2

2

2  + r  = 0u  =
P2
1  ∫

−

P

P
0u dθ,   ∫

−

P

P

0
2u

2
1 dθ  = 2P ( U d + B ),                (24) 

 

          ∫
−

−
P

P

2
0θ0

3 ])(u
2
3u

3
1[  dθ  =  2P { U ( U d + B ) −  A },                                    (25) 

 
where  )E(s2  is the complete elliptic integral of the second kind.  
                                    
 

First Order Expansion 
    From the expanded equation (7), if we equate coefficients of  ε to zero, we get the 
third order linear differential equation for: 
 
                           − ω θ1u  +   θκ )uu( 10  +  3κ  θθθ1u   =   1f ,                                   (26) 
 
where the expression  1f  is given by  
 
             1f   =  − T0u  − X00uu  − 3 X0

2u θθκ  − 3 κ θθκ 0Xu  − V ( 0u  ).                  (27) 
 
Periodicity Conditions 
 In order for  1u  to be periodic in θ with periodic 2P, we should have the conditions    

                                              ∫
−

P

P
1f dθ  =  0 , ∫

−

P

P
10fu  dθ  =  0,                                (28)                                    

 
and by using 1f  from (27), the first condition in  (28)  simplifies to the condition  
              

              ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂
∫
−

P

P
0dθu

T
     +    ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∂
∂

∫
−

P

P

0
2 dθu

2
1

X
     =     − ∫

−

P

P
0 )u(V  dθ,                     (29) 

 
and by using from (27), the second condition in  (28)  simplifies to the condition  
 

  
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
θ

∂
∂

∫
−

P

P
0

2 du
2
1

T
  +  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
θ⎥⎦

⎤
⎢⎣
⎡ κ−

∂
∂

∫
−

θ

P

P

2
0

2
0

3 d)u(
2
3u

3
1

X
   =  − ∫

−

P

P
00 )u(Vu  dθ.     (30) 
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By using the conditions (24), the periodicity condition (29) becomes   
 

                  )d(
T∂
∂   +   )BUd(

X
+

∂
∂  =    − 

P2
1
∫
−

P

P
0 )u(V  dθ,                                  (31) 

 
and by using the conditions  (24) (25) , the periodicity condition  (30) becomes  
 

           )BUd(
T

+
∂
∂   +   { }( )A)BUd(U

X
−+

∂
∂  =    − 

P2
1
∫
−

P

P
00 )u(Vu  dθ.             (32) 

 
Function W and Related Relations 

 In order to put the consistency condition (5) and the periodicity conditions (31), (32) 
in a more symmetric form, we introduced the function W(A, B, U) by the relation  
 

             W = 
P2
κ   ∫ 00θduu  =   

P2
1  ∫ −++ 3uUuBU2A2 0

3
0

2
0   d 0u .          (33) 

 
Here, the symbol ∫ denotes integration over a complete cycle of oscillation. We also noticed 

that in the definition (33), the function  0u  plays the role of a dummy variable . Also we can 
easily obtain the relations  
 
           κ  = A

1W − ,    d  =  BA
1 WW −  ,     U d + B  =  UA

1 WW − .                              (34) 
 
Since p, q, r are the zeros of 3uUu2Bu2A 0

3
0

2
0 −++ , we can express W(p ,q ,r) 

in the form   
 

                        W  =  
P2
1  

3
1   ∫ −−−

p

q
000 )ru)(qu)(up(  d 0u .                           (35) 

Following Byrd & Friedman (1971), we also can express the functions W, AW  and BW  in 

terms of the two complete elliptic integrals of the first and second kind )s(K 2  , )s(E 2  by the 
relations   
 

W    =   
P2
1  

315
8  

25

2s
a
⎟
⎠

⎞
⎜
⎝

⎛  { )s(K)2/s1)(s1()s(E)ss1( 222242 −−−+−  },       (36) 

 

AW  =  
P
1  

2/12

a
s12

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
)s(K 2 ,  BW   =   

P
1

212

a
12s

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 )K(s2

⎭
⎬
⎫

⎩
⎨
⎧
+

)K(s
)E(s

s
ar 2

2

2 .         (37) 
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Modulation Equations for the Perturbed KdV Equation 
 
      By using the relations (34), the consistency condition (5), the periodicity conditions 
(31) and (32) reduce to the modulation equations in the more symmetric form:  
 

                     
X
UW

X
W

U
T

W
A

AA

∂
∂

−
∂
∂

+
∂
∂   =     0  ,                                                      (38) 

 

                     
X
BW

X
W

U
T

W
A

BB

∂
∂

+
∂
∂

+
∂
∂    =   

2P
WA−   ∫

−

P

P
0 )V(u  dθ,                           (39) 

                                                                                                                                            

                     
X
AW

X
W

U
T

W
A

UU

∂
∂

−
∂
∂

+
∂
∂

  =    
2P
WA−   ∫

−

P

P
00 )V(uu  dθ.                       (40)  

 
 These three modulation equations (38) ,( 39) and (40) were indeed obtained by 
Whitham [13] for the case when V(u) = 0. To simplify equations (38) ,( 39) and (40) , we 
noticed that W = W ( p ,q ,r )  and we evaluate  AW , BW , UW  in terms of  pW , qW , rW  to 
get the relations      
 
 

             AW   =   − 6 
⎭
⎬
⎫

⎩
⎨
⎧

−−
+

−−
+

−− p)r)(r(q
W

r)q)(q(p
W

p)q)(r(p
W rqp ,                     (41) 

 

             BW   =   − 6 
⎭
⎬
⎫

⎩
⎨
⎧

−−
+

−−
+

−− p)r)(r(q
rW

r)q)(q(p
qW

p)q)(r(p
pW rqp ,                     (42) 

 

              UW  =   − 3 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−
+

−−
+

−− p)r)(r(q
Wr

r)q)(q(p
Wq

p)q)(r(p
Wp r

2
q

2
p

2

.                     (43) 

 By using the relations (41) , (42) and (43) in equations (38) , and after simplifying and 
arranging terms (nontrival) , we get the equation   
 

Tq)(p +  + 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−

−+−+−
−++

)W(W
)Wr(W)Wq(W)Wp(W

r)q(p
3
1

qp

qpprrq
Xq)(p +   

         

               =   
⎭
⎬
⎫

⎩
⎨
⎧

−
−
−

∫ ∫
− −

P

P

P

P
00

A
0

A

qp

)dθV(uu
P

W
)dθV(u

P
rW

)W6(W
q)(p ,                           (44) 

 
the equation  
 

  Tr)(q +  + 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−

−+−+−
−++

)W(W
)Wr(W)Wq(W)Wp(W

r)q(p
3
1

rq

qpprrq
Xr)(q +   
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               =   
⎭
⎬
⎫

⎩
⎨
⎧

−
−
−

∫ ∫
− −

P

P

P

P
00

A
0

A

rq

)dθV(uu
P

W
)dθV(u

P
pW

)W6(W
r)(q ,                          (45) 

 
and the  equation 
 

Tp)(r +  + 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−

−+−+−
−++

)W(W
)Wr(W)Wq(W)Wp(W

r)q(p
3
1

pr

qpprrq
Xp)(r +   

         

               =   
⎭
⎬
⎫

⎩
⎨
⎧

−
−
−

∫ ∫
− −

P

P

P

P
00

A
0

A

pr

)dθV(uu
P

W
)dθV(u

P
qW

)W6(W
p)(r .                          (46) 

 
Modulation Equations in Characteristic Form 

 Following Whitham (1974), we introduced the variables  1r  , 2r   and  3r  through the 
relations  
                
                    rqr1 += ,           prr2 += ,            qpr3 += ,                                  (47) 
 
so that the equations  (44), ( 45), (46), can be put into a nonlinear nonhomogeneous system of 
first – order partial differential equations   
 

                    
X
r

)r,r,(rQ
T
r 1

3211
1

∂
∂

+
∂
∂     =     )r,r,(rM 3211 ,                                         (48) 

 

                    
X
r

)r,r,(rQ
T
r 2

3212
2

∂
∂

+
∂
∂     =     )r,r,(rM 3212 ,                                        (49) 

                       

                    
X
r

)r,r,(rQ
T
r 3

3213
3

∂
∂

+
∂
∂

    =     )r,r,(rM 3213 ,                                         (50) 

 
where the characteristic velocities 321 Q,Q,Q , are  given by the expressions   
 

             1Q    =       )rr(r
6
1

321 ++   −   { })E(s)K(s
)K(s

3
a

22

2

−
,                                        (51) 

 

             2Q    =       )rr(r
6
1

321 ++   −   { })K(s)1()E(s
))K(ss-(1

3
a

222

22

s−−
 ,                            (52) 

 

             3Q    =       )rr(r
6
1

321 ++   +  
)E(ss

))K(ss-(1
3
a

22

22

 ,                                             (53) 

 
and the nonhomogeneous terms 321 M,M,M  are given by the expressions  
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1M   =   0

P

P
0 du)V(u

P
1
∫
−

−  +  { })E(s)K(sa
)K(ss

22

22

−
 ∫

−

−
P

P
000 )dud)V(u(u

P
1 ,                     (54)           

 

2M   =   0

P

P
0 du)V(u

P
1
∫
−

−  − { })K(s)1()E(sa
)K(ss

222

22

s−−
 ∫

−

−
P

P
000 )dud)V(u(u

P
1 ,           (55)                    

 

3M   =   0

P

P
0 du)V(u

P
1
∫
−

−  −  
)aE(s
)K(ss

2

22

 ∫
−

−
P

P
000 )dud)V(u(u

P
1 .                                   (56) 

 
 

Modulation Equations for the KdV-BURGERS Equation 
 
 For the case  V (u) =  − γ xxu  , (γ > 0) , the case of Korteweg-de Vries-Burgers 
equation   
 
                           −++ xxxxt uuuu ε γ  xxu    =    0,                                                       (57) 

 
  we simplify the nonhomogeneous terms  321 M,M,M  , given by (54), (55), (56)  to  
get the expressions   
 

          1M   =  4

2

45s
4γa   { }

{ })E(s)K(s
))K(s2s)(1s(1))E(sss(1

22

222242

−
−−−+−  ,                     (58) 

             

          2M  =  4

2

45s
4γ- a   { }

{ })K(s)1()E(s
))K(s2s)(1s(1))E(sss(1

222

222242

s−−
−−−+− ,                       (59) 

 

            3M  =   4

2

45s
4γ- a  { }

)E(s
))K(s2s)(1s(1))E(sss(1

2

222242 −−−+−  .                      (60) 

Initial Conditions for the Modulation Equations 
 
              We introduced the initial step discontinuity, (initial condition for u (x .t) at t = 0):  
 
                     u ( x , 0 )  =       0h ,        when    x  <    0    
                                                   0,        when    x   >   0                                          (61)  
 
 
where 0h   is a positive constant . Following Gurevich & Pitaevskii (1973), we can deduce 
the initial conditions for the modulation equations (48), ( 49), (50) at  
T = 0:  
 
                   1r  =  2r   =  0  ,     3r   =    2 0h   ,       for        X  <    0 , 
                                         
    1r   =  0 ,     2r  =  3r  =     2 0h   ,        for        X   >   0.                        (62) 
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 For the case V (u) =  − γ xxu , with the initial condition being the step discontinuity 
(61) ,    we  shall use the modulation  theory  developed , with the initial conditions (62) , to 
study the behavior of waves at those regions just behind the leading front and  ahead of the 
trailing edge .  
 

Solution for the Leading Front 
 At the leading front where 12 →s , 2r  =  3r , q =  r, by using the initial condition (61) 
in  
 

                   d   =  )rr(r
6
1

321 ++  −  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−

)K(s
)E(s3s2)r(r

3
1

2

2
2

13 ,                           (63) 

 
the result which is obtained from (21), (22) , (23) , we get  
 
             1r   =  0,     2r  =  3r  =   P(T) ,           a = P(T) ,                                            (64) 
 
where we assumed that the solution in this region is a function of T alone . Then we 
have from   (51),  (52) ,  (53) ,  (58) ,  (59) ,  (60) , and  by  noticing  1)E(s2 → , 

→)K(s2  + ∞ , 0))K(ss1( 22 →− , { } 1)E(s)K(s)K(s 222 →−   as  12 →s , we have 
 

                        1Q  ∼ 0 ,       2Q  ∼  P(T)
3
1  ,               3Q   ∼  P(T)

3
1 , 

 

and                  1M  ∼ 0 ,      2M  ∼  (T)P
45
4γ 2− ,       3M ∼ (T)P

45
4γ 2−  ,  

 
and the system  (48) , (49) , (50)  , reduced to a single equation   
 

                             
T
P
∂
∂    +   

3
1  P 

X
P

∂
∂  =  − (T)P

45
4γ 2 ,  

 
and hence we obtained that  p  =  ( ) 1454Tc −+ γ . But, when γ = 0 , ( T = 0 ) , and 
when  12 →s  , we had seen that   2r   =    2 0h  , (see Gurevich & Pitaevskii, 1973) ,so 
that  c =  02h1  , with the result  P =  1

00 )45Tγ8h(12h −+  and the relations  
 

         1Q  ∼ 0 ,       2Q  ∼  
1

00

45
Tγ8h

1
3

2h −

⎟
⎠

⎞
⎜
⎝

⎛ + ,        3Q   ∼  
1

00

45
Tγ8h

1
3

2h −

⎟
⎠

⎞
⎜
⎝

⎛ + , 

 
and the relations  
 
 

   1M  ∼ 0 ,      2M  ∼  
2

00
2

45
Tγ8h

1
45

16h −

⎟
⎠
⎞

⎜
⎝
⎛ +−

γ ,       3M  ∼  
2

00
2

45
Tγ8h

1
45

16h −

⎟
⎠
⎞

⎜
⎝
⎛ +−

γ . 
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Then, at the leading front , we found that   
 

                              1r   =  0 ,     2r  =  3r  = 
1

0
0 45

Tγ8h
12h

−

⎟
⎠

⎞
⎜
⎝

⎛ + ,                                 (65) 

 
if the solution in this region is a function of T alone . The characteristic at the leading  

front is given by the differential equation  dTdX  =  2Q  = 
1

00

45
Tγ8h

1
3

2h −

⎟
⎠
⎞

⎜
⎝
⎛ +   or by  

the curve   

                                      X   =    ⎟
⎠
⎞

⎜
⎝
⎛ +

45
Tγ8h

1ln
4γ
15 0 .                                                  (66) 

 
The characteristic (66) becomes   ( )T32hX 0→  , the result for the case when  

V (u) =  0 , but as →T  + ∞ ,  ( )4γ15X →   ln ⎟
⎠
⎞

⎜
⎝
⎛ +

45
Tγ8h

1 0 . 

 
Solution for the Trailing Edge 

  At the trailing edge where 02 →s , 1r  = 2r ,  0→a , p = q, by using the initial 
condition (61)  in (63), we get  
 
                       3r   =    2 0h  ,     1r   =  2r   =  r(T)h 0 + ,                                             (67) 
 
where we assumed that the solution in this region is a function of T alone .  
 
Then we have from  (51),  (52),  (53),  (58),  (59),   (60), we get  
 

1Q  ∼ γ ,   2Q  ∼ γ  , 3Q   ∼  0h ,                 and          1M  ∼ 0 ,      2M  ∼  0,       3M ∼  0,  
 
and the system  (48), (49), (50), reduced to a single equation   
 

                                                
T∂
∂γ    +  γ 

X
γ

∂
∂  =  0,  

 
and hence  γ = constant . But , when  γ = 0, ( T = 0 ) and when 02 →s , we had seen that  1r   
=  2r   =  0 , (see Gurevich & Pitaevskii, 1973) , so that  γ = constant =  − 0h  and we are left 
with the relations  
 

1Q  ∼ − 0h  ,   2Q  ∼ − 0h   , 3Q   ∼  0h ,    and          1M  ∼ 0 ,      2M  ∼  0,       3M ∼  0. 
 
Then , at the trailing edge , we found that   
 
                         1r   =  2r   =  0 ,       3r   =    2 0h ,                                                     (68) 
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if the solution in this region is a function of T alone . The characteristic at the trailing edge is 
given by the differential equation   dTdX  =  2Q  =  −  0h  or by the straight line   
                                                    X  =    − 0h T.                                                        (69) 
 
The characteristic (69 ) becomes  X  →  − 0h T, the result for the case when  
V (u) =  0 , but as   →T  + ∞ ,  −∞→X .  
 
 

Conclusion 
 By using  the  asymptotic expansion, the  consistency  condition and the  periodicity 
conditions, the  modulation  equations  are obtained in  the  more  symmetric form and 
characteristic form.  
 Using the modulation theory, we find that the behavior of waves is the curve  

X =  ⎟
⎠
⎞

⎜
⎝
⎛ +

45
Tγ8h

1ln
4γ
15 0   at the leading-front and is the strongest line  X  =  − 0h T at the 

trailing edge.  
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